Prof. Dr. Ralf Hinze TU Kaiserslautern

M.Sc. Sebastian Schweizer . .
Fachbereich Informatik

AG Programmiersprachen

Functional Programming: Exercise 1

Sheet published: Wednesday, April 17th
Submission deadline: Tuesday, April 23rd, 12:00 noon
Registration deadline: Thursday, April 18th, 12:00 noon

Submission Instructions After you have registered for the exercise (see task , you will
get access to your team’s Git repository on our GitLab server. Please do the submission
for tasks [3] and (] into that repository by Tuesday, April 23rd, 12:00 noon.

1 Register for Exercises

In order to take this course you need to register for the exercises. Please form teams of 3-4
students each. Send an email including your name, contact email address, matrikulation
number, as well as the names of your teammates (names only) to Sebastian Schweizer
(schweizer@cs.uni-kl.de). The registration deadline is Thursday, April 18th, 12:00 noon.
If you cannot find colleagues for a team then we will arrange something during the first
exercise session.

We will register an account for you on our GitLab server and create a repository for your
team. You have to submit your exercise solutions for this and the following sheets into
that repository. We will provide the following exercise sheets directly into your repository.
Furthermore, you will get read access to an additional repository containing the lecture
slides.

2 Tool Setup

In this course, we use the standard lazy functional programming language Haskell. In
order to solve the exercises, you need a Haskell compiler. Furthermore, you need Git
to submit your solutions into your team’s repository and to obtain the lecture material.
Please familiarize yourself with these tools as described in this section.

2.1 Glasgow Haskell Compiler (GHC)

We will mostly work with the interactive environment of GHC, in which Haskell expressions
can be interactively evaluated and programs can be interpreted. The following steps
guide you to install GHC and open the interactive environment (GHCi). After you have
suceessfully started the interactive environment, see task [3| on how to use it.

2.1.1 macOS

Install GHC from Homebrew: brew install ghc.
To start the interactive environment, run ghei from a terminal.

mailto:schweizer@cs.uni-kl.de

2.1.2 Linux

Have a look into your distribution’s official package repository. You will probably find
GHC there, for example:

e Arch Linux: sudo pacman -S ghc

e Debian, Ubuntu: sudo apt-get install ghc
e Fedora: sudo dnf install ghc

e RHEL, CentOS: sudo yum install ghc

Otherwise, download and install GHC from https://www.haskell.org/ghc/.
To start the interactive environment, run ghei from a terminal.

2.1.3 Windows

Download and install the Haskell Platform from https://www.haskell.org/platform/
windows.html (use the “Core” version). To start the interactive environment, open a
terminal (press Windows key + R, run emd) and run the command ghci.

2.2 Git and GitLab

Git is a distributed version control system. We use one Git repository per team to manage
the exercise submissions. This repository is also a good place for you to collaborate with
your teammates. Additionally, there is a separate repository containing the lecture slides
and supportive material.

If you have not yet installed Git on your computer, you can find installation instructions
in the official Git Bookﬂ In case you prefer a GUI over the command line tool, you might
want to install SmartGitﬂ It can be used free of charge for non-comercial usage. An
introduction to the command line tool can be found in the Git tutoriall

We have our own GitLab server, located at https://pl-git.informatik.uni-k1.de.
A central copy of your team’s repository will be stored there. Once you push your commits
to that server we will be able to grade your exercise solutions. After you have registered
to the exercises (see task , we will create an account for you and a repository for your
team. You will receive an email with the subject “Account was created for you” directly
from our GitLab server. It contains a link to set your password. You can then login using
your email address and the password you just have specified.

When using Git (command line or GUI), you can authenticate either using your email
address and GitLab password, or with your private ssh key. To use email and password,
clone the repository using its https url (starting with https://pl-git) instead of the ssh
url (starting with git@pl-git). To use ssh key authentication, please setup your public
ssh key in GitLabE] and clone the repository using its ssh url. You can find both urls on
the “Project — Details” page of the project in GitLab.

"https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
’https://www.syntevo.com/smartgit/
%https://git-scm.com/docs/gittutorial
“https://pl-git.informatik.uni-kl.de/profile/keys

https://www.haskell.org/ghc/
https://www.haskell.org/platform/windows.html
https://www.haskell.org/platform/windows.html
https://pl-git.informatik.uni-kl.de
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://www.syntevo.com/smartgit/
https://git-scm.com/docs/gittutorial
https://pl-git.informatik.uni-kl.de/profile/keys

3 Introduction to GHCi

The interactive environment (GHCi) interactively evaluates Haskell expressions and inter-
prets programs. Open the GHCi as described in task and wait until you see a prompt
Prelude>. Now you can type any expression and it is immediately evaluated. Try it out
with some mathematical expressions, e.g. 4+5%6-7. Now close the GHCi session by typing
:quit (or the shortcut :q).

One typically uses a text editor to write or edit a Haskell script, saves that to disk, and
loads it into GHCi. Create a new file example.hs with the following content:

-- compute the square of an integer
square :: Integer -> Integer
square X = X * X

-- smaller of two arguments
smaller :: (Integer, Integer) -> Integer
smaller (x, y) = if x <= y then x else y

Open a terminal, ed to the directory containg the just created file, and run
ghci example.hs. This loads and interprets the file, you should see:

[1 of 1] Compiling Main (example.hs, interpreted)
Ok, one module loaded.
*Main>

You can now use the functions from your example.hs file. Try out e.g. square 12 and
smaller (42, 44). To load a script, you can either give the script as parameter to
ghci as just explained, or you can type [:1load example.hs into an active GHCi session
(shortcut for :load is :1). To use the :load command, ensure that you run GHCi from
the directory containing the script or provide an absolute path to your script. When the
script is loaded in GHCi and you made some changes to the script file, type :reload (or
:r) to reload your script.

Submission for this task Submit two files into the ex1 folder in your team’s repository:
e the example.hs file created above

e Enter the expression map pred "Ju!xpslt" in GHCi and save the output to a file
named output.txt.

4 Writing your first Haskell Function

Create a file shapes.hs containing the following functions:

areaRectangle :: Integer — Integer — Integer
areaRectangle width height =

perimeterRectangle :: Integer — Integer — Integer
perimeterRectangle width height =

areaCircle :: Float — Float
areaCircle radius =

perimeterCircle :: Float — Float
perimeterClircle radius =

Fill in the gaps (i.e. after each = symbol) such that the functions calculate the area
respectively the perimeter of a rectangle or circle with the given dimensions. Note that
you can use the constant pi which is already defined. Try out your functions in GHCi and
submit the file to the repository.

Final Remarks

First Exercise Session The first exercise session is on Thursday, April 18th, 11:45am,
Room 48-453. Please come there if you have not yet found a team or you have any technical
issues. Nothing else will be discussed in that session (you can of course ask questions).

Next Exercise Sheets The next exercise sheets will be provided directly into your team’s
repository (on Wednesdays). Use git pull to fetch these updates. We will also provide
skeleton files for some exercises such that you only need to fill in some parts.

	Register for Exercises
	Tool Setup
	Glasgow Haskell Compiler (GHC)
	macOS
	Linux
	Windows

	Git and GitLab

	Introduction to GHCi
	Writing your first Haskell Function

