
Dr. Annette Bieniusa

M.Sc. Peter Zeller

TU Kaiserslautern
Fachbereich Informatik

AG Softwaretechnik

Exercise Project: Programming Distributed Systems

(SS 2019)

This exercise sheet will be your final project for this course. Successfully implement-
ing this project is a requirement for being admitted to the exams.

You have to solve and submit this task individually or as a team, together with up to
two other students. If you work in a group it must be visible for us, that every group
member worked on the code (e.g. in the Git log).

You have to implement the basic functionality for this project (Task 1) and must
choose at least N of the feature extensions (Tasks 2-6), where N is the number of
people in your team.

Submit your code via your Git repository before Monday, July 15, 23:59. Either
assign us to a merge request or notify us via mail when your project is ready to be
reviewed and tested. We can also give you feedback on work in progress.

You can find a template for the project in the shared repository under
https://softech-git.informatik.uni-kl.de/progdist19/pds-exercises/tree/master/

code/minidote.

Homework policy Programming is a creative process. Individuals must reach their
own understanding of problems and discover paths to their solutions. During this time,
discussions with friends and colleagues are encouraged, and they must be acknowledged
when you submit your written work. When the time comes to write code, however,
such discussions are no longer appropriate. Each program must be entirely your own
group’s work!

Do not, under any circumstances, permit any student from another group to see any
part of your program, and do not permit yourself to see any part of another group’s
program. In particular, you may not test or debug another group’s code, nor may
you have someone from another group test or debug your code. If you can’t get code
to work, consult the teaching assistant! You may look in the library (including the
internet, etc.) for ideas on how to solve homework problems, just as you may discuss
problems with your classmates. All sources must be acknowledged. The standard
penalty for violating these rules in the assignment is to not pass this exercise.

(The above policies were adapted from policies used by Norman Ramsey at Purdue
University in Spring 1996.)

1 Final Project: A causally consistent CRDT database

For the final project you will develop a replicated data store named “Minidote”1 . The
database should be able to run replicated on multiple (2 - 10) machines. Each replica
is a full replica (eventually) storing all the data. The database must be highly available

1Named after “Antidote”, a planet-scale, available, transactional database with strong semantics. You
are free to change the name of your project.

https://softech-git.informatik.uni-kl.de/progdist19/pds-exercises/tree/master/code/minidote
https://softech-git.informatik.uni-kl.de/progdist19/pds-exercises/tree/master/code/minidote


and provide low latency, so every replica should be able to handle requests, even if it
is temporarily disconnected from others.

Data model: Minidote is a key-CRDT store: Each replicated data object is stored
under a key. The store provides an API to read the current state of an object given a
key and to update objects. The supported update operations depend on the data type
of the object. For example a counter supports increment- and decrement operations,
while a set supports add- and remove-operations.

We will use the Antidote CRDT library2 to support a variety of replicated data types.
Check the readme file of the library and the lecture on CRDTs for information on how
to use the library.

API: We use a Protocol Buffer3 interface to let clients written in a variety of languages
interact with our database. We will reuse the protocol buffer interface of the Antidote
database, so that we can reuse existing clients and benchmarks. The code to handle
protocol buffer requests is already provided in the template. It will call the read_objects

and update_objects functions in the minidote module, which you have to implement. The
details of this API are explained below in 1.1.

Consistency model: The data-store must provide the following consistency guaran-
tees:

Eventual visibility: Every event eventually becomes visible at all replicas.

Causality: If e1
vis−−→ e2 and e2

vis−−→ e3, then e1
vis−−→ e3

Correct return values: Each CRDT has a specification, which maps an abstract
execution to a return value (Hint: the CRDT library ensures correct return
values, if you use is correctly).

For example using a multi-value register guarantees:

v ∈ rval(e)↔
(
∃e1 ∈ E. op(e1) = assign(v)

∧
(
6 ∃e2 ∈ E. e1

vis−−→ e2 ∧ ∃v′. op(e2) = assign(v′)
))

Atomic operations: When several objects are updated with one call to
update_objects, then it should not be possible to observe a state, where some
of the updates are visible and others are not.

Session guarantees: Each call e1 to update_objects and read_objects returns a clock
which identifies the database version after the operation was completed.
This clock can be passed to a succeeding API call e2. In this case, it must

be guaranteed that e1
vis−−→ e2.

Testing In the initial template you will find only some very basic system tests. As
failing system tests are often hard to debug, we recommend that you also write smaller
component tests for the code you write.

Documentation and Code style We expect that you document your code with com-
ments and write clean and readable code.
2https://github.com/AntidoteDB/antidote_crdt
3https://developers.google.com/protocol-buffers/

https://github.com/AntidoteDB/antidote_crdt
https://developers.google.com/protocol-buffers/


1.1 The Minidote API

Module name: minidote

The Minidote is the API of a key value database, where a key is a 3-tuple consisting
of a main identifier (Key), the CRDT type (Type), and a namespace (Bucket).

-type key() :: {Key :: binary(), Type :: antidote_crdt:typ(), Bucket :: binary ()}.

The API consists of 2 functions: read_objects and update_objects. You can choose an
arbitrary representation for the type clock() used below.

The read_objects function takes a list of keys and returns the value of the corresponding
objects. If there are no updates for a key, the initial value for the given Type is returned.
The function takes a clock value, which can be ignore or come from the result of another
call of read_objects or update_objects. If the clock comes from another call, it is guaranteed
that this read observes a state that is not older than the state after the previous call.

-spec read_objects([key()], clock () | ignore) ->

{ok , [any()], clock()}

| {error , any()}.

read_objects(Objects , Clock) -> ...

The update_objects function takes a list of {Key, Operation, Args} tuples and executes the
given updates atomically. If several updates are given for the same key, the updates are
performed sequentially from left to right. The function takes a clock value, which can
be ignore or comes from the result of another call of read_objects or update_objects. If the
clock comes from another call, it is guaranteed that this update operation is applied
on a state that is not older than the state after the previous call.

-spec update_objects([{key(), Op :: atom(), Args :: any()}], clock ()) ->

{ok , clock()}

| {error , any()}.

update_objects(Updates , Clock) -> ...

Example Usage:

To test the API functions you can start a single node or a cluster of nodes with the
Makefile targets (see README.md file in the template). On the shell you can then call the
API methods:

(minidote1@127.0.0.1)1> {ok, Clock} = minidote:update_objects([{{<<"K">>,

antidote_crdt_counter_pn , <<"V">>}, increment , 42}], ignore).

{ok,#{’minidote1@127.0.0.1’ => 1}}
(minidote1@127.0.0.1)2> minidote:read_objects([{<<"K">>, antidote_crdt_counter_pn ,

<<"V">>}], Clock).

{ok,[{{<<"K">>,antidote crdt counter pn,<<"V">>},42}],#{’minidote1@127.0.0.1’ => 1}}

1.2 Architecture

Our template for this project already includes a few components for the final system:

1. A protocol buffer interface, which clients can use to interact with the database.

The protocol buffer (PB) interface manages a set of sockets (using the ranch
library). Clients connect through these sockets and send requests as PB messages.
The PB module translates these messages to Erlang terms, and calls the key-value
server. The result from the key-value server is again encoded into a PB response
and sent back to the client.

2. The Antidote CRDT library.

3. The link layer you know from previous exercises.



You have to implement the API in the minidote module (see 1.1), for which you will
probably need to implement other modules.

You are free to come up with your own architecture to implement the system. One
possible architecture is sketched below:

Key-value server
minidote_server

Causal order broadcast
causal_broadcast

Link layer
link_layer

link_layer_distr_erl

Antidote CRDTs

Minidote API
minidote

Protocol buffer interface
minidote_pb

Client 1 Client 2 Client ...

other nodes

To implement Minidote with this architecture you can follow these steps:

1. Add the causal broadcast algorithm from exercise sheet 2 or 3 to the project.
When starting the broadcast, make it use the distributed Erlang link layer,
which you can start with {ok, LL} = link_layer_distr_erl:start_link(minidote). The
link_layer_distr_erl module uses the environment variable MINIDOTE_NODES to find the
other nodes in the cluster.

2. Create a module minidote_server, which implements a gen_server. This process keeps
the state for each database entry in memory and handles requests for reading and
updating objects.

• To update an object, the server needs to retrieve the current state of the ob-
ject. If the object does not exist, the initial state is created with antidote_crdt:

new. Next, the downstream effect for the update is calculated with antidote_crdt

:downstream. This downstream effect must be applied locally and at all other
servers with antidote_crdt:update. To transfer the downstream effect to all
servers, the causal broadcast algorithm is used.

• For reading an object, the antidote_crdt:value function is used.

• To handle the session guarantees, each server keeps a vector clock to sum-
marize its causal history. This clock has to be updated for each update-
operation and when updates from remote nodes are received.

If a request with a clock lower than the current local clock comes in, the
server has to wait until the necessary updates arrive. To implement the
waiting, put the request into a set of waiting requests and use the option
of the gen_server module to return {noreply, NewState}. The server can then
reply at a later point in time (when the local clock has advanced) using
gen_server:reply.

Note that you cannot use timer/sleep to implement the waiting, since this



would block the server and prevent it from receiving other messages – in
particular the messages that would bring in the operations it is waiting for.

3. Add the minidote_server as a child of the minidote_sup supervisor to make it start
when the application starts.

Register the server using a local name (this is an option of gen_server:start_link).

4. In the minidote module, you can now implement the API functions by forwarding
the requests to the minidote_server. Note that gen_server:call can directly use a
locally registered name as the receiver of the message.

2 Extension: Robustness

The causal broadcast algorithm from the lecture assumed a perfect link model and the
Crash-Fault model for failures. However in practice these guarantees are not met:

• Messages in distributed Erlang do not guarantee reliable delivery. From the
Erlang language specification:

An implementation should ensure that whenever possible, a signal dis-
patched to a process should eventually arrive at it. There are situations
when it is not reasonable to require that all signals arrive at their des-
tination, in particular when a signal is sent to a process on a different
node and communication between the nodes is temporarily lost.

• When a node crashes we want to be able to restart it and continue working.

Make your Minidote implementation robust against these kind of failures. More
precisely your system should guarantee eventual visibility even when messages are lost
and it should provide the following durability guarantee:

Durability: After an update operation returns, the value must be guaranteed to be
persistently stored on at least one machine. The update must not be lost when
the machine crashes and the database restarts later. Read operations may not
return results, which are not yet persistently stored.

Hint: If you implemented the practical causal broadcast from exercise sheet 3, you
can reuse or adapt it here.

3 Extension: Crash recovery and log pruning

Add support for efficiently restarting the system after a crash, without loosing any
database state.

This can be done by writing all update operations to a persistent log (this was our
suggestion for exercise sheet 3). However, over time this log will grow and restarting
can become very slow. To avoid this problem, you can write the state of objects to disk
as well. Once all database servers know about an update and the corresponding state
has been written to disk, the corresponding log entries can be pruned.

Hints: You can use the Erlangs disk-base term storage (DETS) and Disk Log to
store data to disk. Alternatively, you can also use Erlang bindings for external libraries
like LevelDB or RocksDB.

https://github.com/erlang/spec/blob/9582ee3935dc55d29227bd25c7b188ddec000e79/src/es-processes.tex#L547-L552
http://erlang.org/doc/man/dets.html
http://erlang.org/doc/man/disk_log.html
https://hex.pm/packages/eleveldb
https://hex.pm/packages/rocksdb


4 Extension: Parallel requests

Allow each server to handle multiple requests simultaneously. This should increase the
throughput of the system.

Hints: You can spawn a new process for each request. Since Erlang has no direct way
to share state between multiple processes, you can look into the Erlang Term Storage
(ETS) library as an alternative.

It is also possible to have a single process that has multiple open requests simultane-
ously. For example the gen_server module provides the option to return {noreply,NewState}

and then reply at a later point in time using gen_server:reply.

5 Extension: Strong Consistency

Add support for strong consistency: It should be possible to perform read- and update
operations with sequential consistency guarantees.

To do this you can adapt the API in minidote.erl. It is not necessary to extend the
protocol buffer interface.

If you want to keep the API unchanged, you can simply use the convention that all
reads and updates are performed with strong consistency if the bucket name starts with
"sc_".

Hints: You can use a Raft library like rabbitmq/ra to implement strong consistency
using replicated state machines.

6 Extension: Dynamic Membership

Add support for dynamically adding and removing servers from the cluster.

It is sufficient if you add new methods for adding and removing a server in minidote.erl.
It is not necessary to extend the protocol buffer interface.

Hints: The link_layer_distr_erl module uses Erlang process groups to handle cluster
membership. You can adapt this module to support adding and removing new members.

You also need to make sure that a new server can get up to date with current state
of the other servers. If you implemented robustness against lost messages (Task 2), this
should already work without any additional changes.

Your implementation should also handle the case, that a server is removed from the
system and later a new server joins with the same node name.

http://erlang.org/doc/man/ets.html
http://erlang.org/doc/man/ets.html
https://github.com/rabbitmq/ra
http://erlang.org/doc/man/pg2.html

	Final Project: A causally consistent CRDT database
	The Minidote API
	Architecture

	Extension: Robustness
	Extension: Crash recovery and log pruning
	Extension: Parallel requests
	Extension: Strong Consistency
	Extension: Dynamic Membership

