
Dr. Annette Bieniusa

M.Sc. Peter Zeller

TU Kaiserslautern
Fachbereich Informatik

AG Softwaretechnik

Exercise 2: Programming Distributed Systems (SS 2019)
• To get feedback to your solution: Create a new branch in your git repository

(e.g. git checkout -b ex2). Submit your solution to the programming exercise via
your group’s repository to the new branch in a folder named “ex2”. When your
solution is ready, create a merge request in Gitlab and assign Peter Zeller to it.
This will allow us to comment on your code and give you feedback.

• Test your submission with the provided test cases. Feel free to add more tests,
but do not change the given test files, as we might update them later.

• Prepare these tasks for the exercise on Thursday, May 3.

1 Vector clocks and causal broadcast

A vector clock is a mapping from processes to positive integers1. Implement a module
named vectorclock with the following functions:

• new() creates a new vector clock, where all processes have value 0.

• increment(VC, P) increments the entry of process P by 1.

• get(VC, P) returns the value for process P.

• leq(VC1, VC2) checks, whether VC1 is less than or equal to VC2. This is the case, iff
∀P. get(V C1, P) ≤ get(V C2, P).

• merge(VC1, VC2) merges two vector clocks by computing their least upper bound
(the smallest vector clock V, such that V C1 ≤ V and V C2 ≤ V).

2 Causal Broadcast

Give an example execution, which shows that the following algorithm does not correctly
implement causal broadcast.

State:

pending // set of messages that cannot be delivered yet

delivered // set of delivered message -ids

last // message -id of last received message

Upon Init do:

pending <- ∅;
delivered <- {none};

last <- none;

Upon rco -Broadcast(m) do

trigger rco -Deliver(self , m);

uid <- generateUniqueId(m);

trigger rb -Broadcast(uid , last , m);

delivered <- delivered ∪ {uid};

last <- uid;

Upon rb-Deliver(p, uid , lastm, m) do

if (p 6= self) then

pending <- pending ∪ {(p, uid , lastm, m)};

while exists (q, uid , lastm, mq) ∈ pending such that lastm ∈ delivered
pending <- pending \ {(q, uid , lastm, mq)};

trigger rco -Deliver(q, mq);

delivered <- delivered ∪ {uid}

last <- uid

Link layer

The algorithms you will implement in the tasks below are based on a link-layer, which
is provided by us (included in template for this exercise) and implements the commu-
nication network. You can assume that this layer implements the perfect-link model.

To use it, use the link_layer module, which provides the following functions, that all
take the link-layer instance LL as their first argument:

%% sends Data to other Node

send(LL , Data , Node)

%% Registers a receiver: all future messages will be delivered

%% to the registered process (Receiver)

register(LL, Receiver)

%% get a list of all nodes (including own node)

all_nodes(LL)

%% get a list of all other nodes

other_nodes(LL)

%% get this node

this_node(LL)

3 Best-effort broadcast

Implement a module named best_effort_broadcast, which implements the best-effort broad-
cast algorithm from the lecture.

The module should provide the following exported functions:

1. A function start_link(LinkLayer, RespondTo), which starts a process handling the algo-
rithm. On success the function returns a tuple {ok, Beb}, where Beb is a process-id
used in later calls to broadcast (see below). The first argument of the function is
a reference to the link-layer process, which is to be used for communicating with
other nodes (see above). The second argument is a process-id. When delivering
a broadcast message Msg, the tuple {deliver, Msg} should be sent to this process.

2. A function broadcast(Beb, Messsage), which broadcasts a message to all participating
processes. The first argument is the process-id returned by start_link, the second
argument is the message to send. The return value should be the atom ok.

4 Reliable broadcast

Implement a module named reliable_broadcast, which implements the reliable broadcast
algorithm from the lecture.

The module should provide the start_link(LinkLayer, RespondTo) and broadcast(Beb, Messsage

) functions, similar to the best_effort_broadcast module.

5 Causal broadcast

Implement a module named causal_broadcast, which implements the causal broadcast
algorithm 2 (waiting) from the lecture.

Again, the module should provide the start_link(LinkLayer, RespondTo) and broadcast(Beb

, Messsage) functions. To deliver a broadcast it should send a message {deliver, Msg}.

Notes

1. In the literature it is often assumed that processes are numbered which allows to write down clocks

like [4, 7, 3] or

4
7
3

 instead of the longer {p1 7→ 4, p2 7→ 7, p3 7→ 3}. However, in this exercise we do

not assume that the number of processes is known and arbitrary terms can be used as process names.

	Vector clocks and causal broadcast
	Causal Broadcast
	Best-effort broadcast
	Reliable broadcast
	Causal broadcast

