Dr. Annette Bieniusa TU KaiserSIautern

M.Sc.

Peter Zeller Fachbereich Informatik

AG Softwaretechnik

Exercise 2: Programming Distributed Systems (SS 2019)

To get feedback to your solution: Create a new branch in your git repository
(e.g. git checkout -b ex2). Submit your solution to the programming exercise via
your group’s repository to the new branch in a folder named “ex2”. When your
solution is ready, create a merge request in Gitlab and assign Peter Zeller to it.
This will allow us to comment on your code and give you feedback.

Test your submission with the provided test cases. Feel free to add more tests,
but do not change the given test files, as we might update them later.

Prepare these tasks for the exercise on Thursday, May 3.

1 Vector clocks and causal broadcast

A vector clock is a mapping from processes to positive integerdl. Implement a module
named vectorclock with the following functions:

new() creates a new vector clock, where all processes have value 0.
increment (VC, P) increments the entry of process p by 1.
get(vc, P) returns the value for process .

leq(vci, ve2) checks, whether vei is less than or equal to vez. This is the case, iff
VP. get(VCy, P) < get(VCs, P).

merge(VC1, VC2) merges two vector clocks by computing their least upper bound
(the smallest vector clock v, such that VC, <V and VCy < V).

2 Causal Broadcast

Give an example execution, which shows that the following algorithm does not correctly
implement causal broadcast.

State:
pending // set of messages that cannot be delivered yet
delivered // set of delivered message-ids
last // message-id of last received message

Upon

Init do:

pending <- 0;
delivered <- {nomne};
last <- none;

Upon rco-Broadcast(m) do
trigger rco-Deliver(self, m);
uid <- generateUniqueId(m);
trigger rb-Broadcast (uid, last, m);
delivered <- delivered U {uid};
last <- uid;

Upon rb-Deliver (p, uid, lasty,, m) do

if

(p # self) then

pending <- pending U {(p, uid, lasty,, m)};
while exists (q, uid, lastm, mg) € pending such that last, € delivered

pending <- pending \ {(q, uid, last,m, mg)};
trigger rco-Deliver(qg, mg);

delivered <- delivered U {uid}

last <- uid

Link layer

The algorithms you will implement in the tasks below are based on a link-layer, which
is provided by us (included in template for this exercise) and implements the commu-
nication network. You can assume that this layer implements the perfect-link model.

To use it, use the 1ink_1ayer module, which provides the following functions, that all
take the link-layer instance LL as their first argument:

%% sends Data to other Node

send (LL, Data, Node)

%% Registers a receiver: all future messages will be delivered
%% to the registered process (Receiver)
register (LL, Receiver)

%%h get a list of all nodes (including own node)
all_nodes (LL)

%% get a list of all other nodes
other_nodes (LL)

%% get this node

this_node (LL)

3 Best-effort broadcast

Implement a module named best_effort_broadcast, which implements the best-effort broad-
cast algorithm from the lecture.

The module should provide the following exported functions:

1. A function start_link(LinkLayer, RespondTo), Which starts a process handling the algo-
rithm. On success the function returns a tuple {ok, Beb}, where Beb is a process-id
used in later calls to broadcast (see below). The first argument of the function is
a reference to the link-layer process, which is to be used for communicating with
other nodes (see above). The second argument is a process-id. When delivering
a broadcast message uMsg, the tuple {deliver, Msg} should be sent to this process.

2. A function broadcast (Beb, Messsage), which broadcasts a message to all participating
processes. The first argument is the process-id returned by start_1ink, the second
argument is the message to send. The return value should be the atom ok.

4 Reliable broadcast

Implement a module named reliable_broadcast, which implements the reliable broadcast
algorithm from the lecture.

The module should provide the start_link(LinkLayer, RespondTo) and broadcast (Beb, Messsage
) functions, similar to the best_effort_broadcast module.

5 Causal broadcast

Implement a module named causal_broadcast, which implements the causal broadcast
algorithm 2 (waiting) from the lecture.

Again, the module should provide the start_link(LinkLayer, RespondTo) and broadcast (Beb
, Messsage) functions. To deliver a broadcast it should send a message {deliver, Msg}.

Notes

1. In the literature it is often assumed that processes are numbered which allows to write down clocks
4

like [4,7,3] or | 7| instead of the longer {p1 — 4,p2 — 7,p3 — 3}. However, in this exercise we do
3

not assume that the number of processes is known and arbitrary terms can be used as process names.

	Vector clocks and causal broadcast
	Causal Broadcast
	Best-effort broadcast
	Reliable broadcast
	Causal broadcast

