
Programming Distributed Systems
Introduction to Erlang

Peter Zeller, Annette Bieniusa

AG Softech
FB Informatik

TU Kaiserslautern

Summer Term 2019

Peter Zeller, Annette Bieniusa Programming Distributed Systems Summer Term 2019 1/ 40

What is Erlang?

Peter Zeller, Annette Bieniusa Programming Distributed Systems Summer Term 2019 2/ 40

Erlang

Dynamically typed, functional programming language with built-in
support for concurrency, distribution, and fault tolerance

Supervised processes as simple and powerful model for error
containment and fault tolerance
Concurrency and message passing as first class language features
Transparent distribution mechanism
OTP libraries provide support for many common problems in
networking and telecommunications systems
Erlang runtime environment (BEAM)

Lightweight processes
Hot code replacement
No shared state, processes with independent heaps (fast GC)

Peter Zeller, Annette Bieniusa Programming Distributed Systems Summer Term 2019 3/ 40

What is it suitable for?

Peter Zeller, Annette Bieniusa Programming Distributed Systems Summer Term 2019 4/ 40

Application areas

Distributed, reliable, soft real-time concurrent systems.

Telecommunication systems, e.g. controlling a switch or
converting protocols.
Servers for Internet applications, e.g. a mail transfer agent, an
IMAP-4 server, an HTTP server.
Telecommunication applications, e.g. handling mobility in a
mobile network or providing unified messaging.
Database applications which require soft realtime behaviour.

Peter Zeller, Annette Bieniusa Programming Distributed Systems Summer Term 2019 5/ 40

When to avoid Erlang

Short-running computations because of the startup time of the
Erlang VM
CPU-intensive work because the Erlang VM is not optimized for
this work
Share-memory parallel computation because there is no shared
memory
End-user desktop deployments because it is difficult to have
single-file binary executables

Peter Zeller, Annette Bieniusa Programming Distributed Systems Summer Term 2019 6/ 40

Learning resources (selection)

Learn you some Erlang for Great Good
http://learnyousomeerlang.com/content
Erlang Website https://www.erlang.org
Erlang Course https://www.erlang.org/course
Erlang Master classes
https://www.cs.kent.ac.uk/ErlangMasterClasses/

Peter Zeller, Annette Bieniusa Programming Distributed Systems Summer Term 2019 7/ 40

http://learnyousomeerlang.com/content
https://www.erlang.org
https://www.erlang.org/course
https://www.cs.kent.ac.uk/ErlangMasterClasses/

The Erlang Shell

The Erlang shell can be started with erl (or with rebar3 shell inside
a project).

It can be used to evaluate expressions and experiment with the
language and with running programms.

Each expression must be ended with a dot in the shell:
1> 1 + 2.
3
2> 7 * 6.
42

Write help(). to see a list of commands available in the shell.

Peter Zeller, Annette Bieniusa Programming Distributed Systems Summer Term 2019 8/ 40

Numbers

Integers
10.
-234.
16#AB10F.
2#110111010.

Floats
17.368.
-56.654.
12.34E-10.

B#Val is used to store numbers in base B.
$Char is used for ascii values (example \$A instead of 65).

Peter Zeller, Annette Bieniusa Programming Distributed Systems Summer Term 2019 9/ 40

Atoms

true.
false.
abcef.
start_with_a_lower_case_letter.
'Blanks can be quoted'.
'Anything inside quotes \n\012'.

Starts with lower case letter (or in single quotes)
Efficient memory representation

Peter Zeller, Annette Bieniusa Programming Distributed Systems Summer Term 2019 10/ 40

Tuples

{123, bcd}.
{123, def, abc}.
{person, 'Joe', 'Armstrong'}.
{abc, {def, 123}, jkl}.
{}.

Used to store a fixed number of items.
Tuples of any size are allowed.

Peter Zeller, Annette Bieniusa Programming Distributed Systems Summer Term 2019 11/ 40

Lists
[123, xyz].
[123, def, abc].
[72,101,108,108,111].
[{person, 'Joe', 'Armstrong'},
{person, 'Robert', 'Virding'},
{person, 'Mike', 'Williams'}

].
[head|tail].
[x1, x2, x3| tail].
hd([1,2,3]).
tl([1,2,3]).

Used to store a variable number of items.
Lists are dynamically sized.
“...” is short for the list of integers representing the ascii character
codes of the enclosed within the quotes.

Peter Zeller, Annette Bieniusa Programming Distributed Systems Summer Term 2019 12/ 40

Strings

Strings are lists of characters and characters are integers
"abcdefghi".

% equivalent to [97,98,99,100,101,102,103,104,105]
"".

% equivalent to []

Peter Zeller, Annette Bieniusa Programming Distributed Systems Summer Term 2019 13/ 40

Variables

Abc.
A_long_variable_name.
ALongVariableName.

Start with an Upper Case Letter.
No ”funny characters”.
Variables are used to store values of data structures.
Variables can only be bound once! The value of a variable can
never be changed once it has been set (bound).

Peter Zeller, Annette Bieniusa Programming Distributed Systems Summer Term 2019 14/ 40

Binding variables

Assignment X = Expr binds the variable X to the value of Expr.

The value of Expr is also the result of the assignment-expression.
A = 123.
X = (Y = 3) + 2.

Hint: In the Erlang shell (not in Erlang programs) you can clear
variable bindings:
f(). % forget all variable bindings
f(X). % forget the binding of variable X
help(). % shows all available commands in the shell

Peter Zeller, Annette Bieniusa Programming Distributed Systems Summer Term 2019 15/ 40

Sequences

A sequence of expressions separated by comma is evaluated from left to
right. The result of the last expression is also the result of the sequence.
A = 1, B = 2, C = A + B.

Usually we write a newline after each comma:
A = 1,
B = 2,
C = A + B.

Peter Zeller, Annette Bieniusa Programming Distributed Systems Summer Term 2019 16/ 40

Operators

Binary operators:

= !
orelse
andalso
== /= < >= > =:= =/=
++ --

+ - bor bxor bsl or xor
/ * div rem band and

Unary operators: + - bnot not

Peter Zeller, Annette Bieniusa Programming Distributed Systems Summer Term 2019 17/ 40

Complex Data Structures

[{ {person,'Joe', 'Armstrong'},
{telephoneNumber, [3,5,9,7]},
{shoeSize, 42},
{pets, [{cat, tubby},{cat, tiger}]},
{children,[{thomas, 5},{claire,1}]}},

{ {person,'Mike','Williams'},
{shoeSize,41},
{likes,[boats, beer]},
...

Arbitrary complex structures can be created.
Data structures are created by writing them down (no explicit
memory allocation or deallocation is needed etc.).
Data structures may contain bound variables.

Peter Zeller, Annette Bieniusa Programming Distributed Systems Summer Term 2019 18/ 40

Pattern Matching
A = 10.

% Succeeds - binds A to 10

{B, C, D} = {10, foo, bar}.
% Succeeds - binds B to 10, C to foo and D to bar

{A, A, B} = {abc, abc, foo}.
% Succeeds - binds A to abc, B to foo

{A, A, B} = {abc, def, 123}.
% Fails

[A,B,C] = [1,2,3].
% Succeeds - binds A to 1, B to 2, C to 3

[A,B,C,D] = [1,2,3].
% Fails

Peter Zeller, Annette Bieniusa Programming Distributed Systems Summer Term 2019 19/ 40

Pattern Matching (Cont)
[A,B|C] = [1,2,3,4,5,6,7].

% Succeeds - binds A = 1, B = 2,
% C = [3,4,5,6,7]

[H|T] = [1,2,3,4].
% Succeeds - binds H = 1, T = [2,3,4]

[H|T] = [abc].
% Succeeds - binds H = abc, T = []

[H|T] = [].
% Fails

{A,_, [B|_],{B}} = {abc,23,[22,x],{22}}.
% Succeeds - binds A = abc, B = 22

Note the use of ” ”, the anonymous (don’t care) Pattern.

Peter Zeller, Annette Bieniusa Programming Distributed Systems Summer Term 2019 20/ 40

Pattern Matching: Question

Given the following definition:
Person = {person,

{name,
{first, joe},
{last, armstrong}},

{footsize, 42}}.

Write a pattern that extracts the first name from Person.
____________ = Person.

Peter Zeller, Annette Bieniusa Programming Distributed Systems Summer Term 2019 21/ 40

Case Expression

case Expr of
Pattern1 -> Expr1;
Pattern2 -> Expr2;
...
PatternN -> ExprN

end

% Example:
case X > Y of

true -> X;
false -> Y

end.

Peter Zeller, Annette Bieniusa Programming Distributed Systems Summer Term 2019 22/ 40

If Expression

if
Cond1 -> Expr1;
Cond2 -> Expr2;
...
CondN -> ExprN

end

% Example:
if

X > Y -> X;
X =< Y -> Y

end

Peter Zeller, Annette Bieniusa Programming Distributed Systems Summer Term 2019 23/ 40

Function Calls

% different module:
module:func(Arg1, Arg2, ... Argn)

% same module:
func(Arg1, Arg2, .. Argn)

Arg1 .. Argn are any Erlang data structures. atoms.
A function can have zero arguments. (e.g. date() - returns the
current date).
Functions are defined within Modules.
Functions must be exported before they can be called from
outside the module where they are defined.

Peter Zeller, Annette Bieniusa Programming Distributed Systems Summer Term 2019 24/ 40

Module System

-module(demo).
-export([double/1]).

double(X) ->
times(X, 2).

times(X, N) ->
X * N.

double can be called from outside the module, times is local to
the module.
double/1 means the function double with one argument (Note
that double/1 and double/2 are two different functions).

Peter Zeller, Annette Bieniusa Programming Distributed Systems Summer Term 2019 25/ 40

Function Syntax

Is defined as a collection of clauses.
func(Pattern1_1, Pattern1_2, ...) -> ExprList1 ;
func(Pattern2_2, Pattern2_2, ...) -> ExprList2 ;
...
func(PatternN_1, PatternN_2, ...) -> ExprListN .

Evaluation Rules

Clauses are scanned from top to bottom until a match is found.
When a match is found all variables occurring in the head become
bound.
Variables are local to each clause, and are allocated and
deallocated automatically.

Peter Zeller, Annette Bieniusa Programming Distributed Systems Summer Term 2019 26/ 40

Functions (cont)
-module(mathStuff).
-export([factorial/1, area/1]).

factorial(0) -> 1;
factorial(N) -> N * factorial(N-1).

area({square, Side}) ->
Side * Side;

area({circle, Radius}) ->
% almost :-)
math:pi() * Radius * Radius;

area({triangle, A, B, C}) ->
S = (A + B + C)/2,
math:sqrt(S*(S-A)*(S-B)*(S-C));

area(Other) ->
{invalid_object, Other}.

Peter Zeller, Annette Bieniusa Programming Distributed Systems Summer Term 2019 27/ 40

Evaluation example
factorial(0) -> 1;
factorial(N) -> N * factorial(N-1)

> factorial(3)
matches N = 3 in clause 2
== 3 * factorial(3 - 1)
== 3 * factorial(2)
matches N =2 in clause 2
== 3 * 2 * factorial(2 - 1)
== 3 * 2 * factorial(1)
matches N = 1 in clause 2
== 3 * 2 * 1 * factorial(1 - 1)
== 3 * 2 * 1 * factorial(0)
== 3 * 2 * 1 * 1 (clause 1)
== 6

Variables are local to each clause.
Variables are allocated and deallocated automatically.

Peter Zeller, Annette Bieniusa Programming Distributed Systems Summer Term 2019 28/ 40

Traversing Lists
average(X) -> sum(X) / len(X).

sum([]) -> 0;
sum([H|T]) -> H + sum(T).

len([]) -> 0;
len([_|T]) -> 1 + len(T).

Note the pattern of recursion is the same in both cases.

Two other common patterns:
double([]) -> [];
double([H|T]) -> [2*H|double(T)].

member(_, []) -> false;
member(H, [H|_]) -> true;
member(H, [_|T]) -> member(H, T).

Peter Zeller, Annette Bieniusa Programming Distributed Systems Summer Term 2019 29/ 40

Lists and Accumulators

average(X) -> average(X, 0, 0).

average([H|T], Length, Sum) ->
average(T, Length + 1, Sum + H);

average([], Length, Sum) ->
Sum / Length.

Only traverses the list ONCE
Executes in constant space (tail recursive)
The variables Length and Sum play the role of accumulators
N.B. average([]) is not defined - (you cannot have the average of
zero elements) - evaluating average([]) would cause a run-time
error.

Peter Zeller, Annette Bieniusa Programming Distributed Systems Summer Term 2019 30/ 40

Task: Functions
1 Write functions f2c(F) and c2f(C) which convert between

centigrade and Fahrenheit scales. (hint: 5(F-32) = 9C)

2 Write a function convert(Temperature) which combines the
functionality of f2c and c2f. Example:
> temp:convert({c,100}).
{f,212}
> temp:convert({f,32}).
{c,0}

3 Write a function mathStuff:perimeter(Form) which computes the
perimeter of different forms. Form can be one of:

{rect, Center, Width, Height}
{circle, Center, Radius}
{polynom, Points} , where Points is a List of {X,Y}
coordinates

Hint: use the math:pi/0 and math:sqrt/1 functions
Peter Zeller, Annette Bieniusa Programming Distributed Systems Summer Term 2019 31/ 40

Guarded Function Clauses
factorial(0) -> 1;
factorial(N) when N > 0 ->

N * factorial(N - 1).

The reserved word when introduces a guard.
Fully guarded clauses can be re-ordered.
factorial(N) when N > 0 ->

N * factorial(N - 1);
factorial(0) -> 1.

This is NOT the same as:
factorial(N) ->

N * factorial(N - 1);
factorial(0) -> 1.

(incorrect!!)

Peter Zeller, Annette Bieniusa Programming Distributed Systems Summer Term 2019 32/ 40

Examples of Guards
number(X) % X is a number
integer(X) % X is an integer
float(X) % X is a float
atom(X) % X is an atom
tuple(X) % X is a tuple
list(X) % X is a list

length(X) == 3 % X is a list of length 3
size(X) == 2 % X is a tuple of size 2.

X > Y + Z % X is > Y + Z
X == Y % X is equal to Y
X =:= Y % X is exactly equal to Y

% (i.e. 1 == 1.0 succeeds but
% 1 =:= 1.0 fails)

All variables in a guard must be bound.
See the User Guide for a full list of allowed guards

Peter Zeller, Annette Bieniusa Programming Distributed Systems Summer Term 2019 33/ 40

Functions as values

% function references:
F = fun math:sqrt/1.
F(5).

% anonymous functions:
G = fun(X) -> 2 * X end.
G(5).

% with patterns:
H = fun ({a,X}) -> X; ({b, X}) -> 2*X end.

Peter Zeller, Annette Bieniusa Programming Distributed Systems Summer Term 2019 34/ 40

Higher order functions

Functions that take functions as argument.

For example map: Applies function F on all elements in a list.
map(F, []) -> [];
map(F, [H|T]) -> [F(H)|map(F,T)].

Usage:
> map(fun(X) -> 2 * X end, [1, 2, 3]).
[2, 4, 6]

Peter Zeller, Annette Bieniusa Programming Distributed Systems Summer Term 2019 35/ 40

Closures

Anonymous functions can capture variables in scope (by value):
Fs = lists:map(fun(X) -> fun(Y) -> X+Y end end, [3, 1, 7]).
Xs = lists:map(fun(F) -> F(5) end, Fs).

Peter Zeller, Annette Bieniusa Programming Distributed Systems Summer Term 2019 36/ 40

Standard Library Functions
map(Fun, List1) -> List2

% select elements that match Pred
filter(Pred, List1) -> List2

% traverse list from left to right using accumulator
foldl(Fun, Acc0, List) -> Acc1
% traverse list from right to left using accumulator
foldr(Fun, Acc0, List) -> Acc1

% check if all elements match Pred
all(Pred, List) -> boolean()

% check if any element matches Pred
any(Pred, List) -> boolean()

% like map, but Fun can return a list of elements
flatmap(Fun, List1) -> List2

Peter Zeller, Annette Bieniusa Programming Distributed Systems Summer Term 2019 37/ 40

Examples: Using Higher Order Functions

% Square all numbers in the list:
> lists:map(fun(X) -> X*X end, [1,2,3,4,5]).
[1,4,9,16,25]

% select even numbers from list
> lists:filter(fun(X) -> X rem 2 == 0 end, [1,2,3,4,5]).
[2,4]

% Sum all elements in list
% Starts with accumulator 0, and
% adds each number to the accumulator
>lists:foldl(fun(X,Acc) -> X+Acc end, 0, [1,2,3,4,5]).
15

Peter Zeller, Annette Bieniusa Programming Distributed Systems Summer Term 2019 38/ 40

Quiz: Higher order functions

lists:map(fun cook/1, [, , ,]).

lists:filter(fun isVeg/1, [, , ,]).

lists:foldl(fun feed/2, , [, , ,]).

Peter Zeller, Annette Bieniusa Programming Distributed Systems Summer Term 2019 39/ 40

Quiz: Higher order functions

lists:map(fun cook/1, [, , ,]).
[, , ,]

lists:filter(fun isVeg/1, [, , ,]).

lists:foldl(fun feed/2, , [, , ,]).

Peter Zeller, Annette Bieniusa Programming Distributed Systems Summer Term 2019 39/ 40

Quiz: Higher order functions

lists:map(fun cook/1, [, , ,]).
[, , ,]

lists:filter(fun isVeg/1, [, , ,]).

lists:foldl(fun feed/2, , [, , ,]).

Peter Zeller, Annette Bieniusa Programming Distributed Systems Summer Term 2019 39/ 40

Quiz: Higher order functions

lists:map(fun cook/1, [, , ,]).
[, , ,]

lists:filter(fun isVeg/1, [, , ,]).
[,]

lists:foldl(fun feed/2, , [, , ,]).

Peter Zeller, Annette Bieniusa Programming Distributed Systems Summer Term 2019 39/ 40

Quiz: Higher order functions

lists:map(fun cook/1, [, , ,]).
[, , ,]

lists:filter(fun isVeg/1, [, , ,]).
[,]

lists:foldl(fun feed/2, , [, , ,]).

Peter Zeller, Annette Bieniusa Programming Distributed Systems Summer Term 2019 39/ 40

Quiz: Higher order functions

lists:map(fun cook/1, [, , ,]).
[, , ,]

lists:filter(fun isVeg/1, [, , ,]).
[,]

lists:foldl(fun feed/2, , [, , ,]).

Peter Zeller, Annette Bieniusa Programming Distributed Systems Summer Term 2019 39/ 40

Quiz: Higher order functions

Can you implement functions cook, isVeg, and feed, such that the
examples work?
> C = lists:map(fun cook/1, [cow, potato, chicken, corn]).
[burger, fries, chicken_drum, popcorn]
> lists:filter(fun isVeg/1, C).
[fries, popcorn].
> lists:foldl(fun feed/2, hungry, C).
digestion_complete

Bonus question: Digestion is complete, only when all 4 different items
have been consumed (any order, each at least once).

Peter Zeller, Annette Bieniusa Programming Distributed Systems Summer Term 2019 40/ 40

	What is it suitable for?

