
Programming Distributed Systems
02 Broadcast

Annette Bieniusa

AG Softech
FB Informatik

TU Kaiserslautern

Summer Term 2019

Annette Bieniusa Programming Distributed Systems Summer Term 2019 1/ 31

Overview

Formalism for specifying distributed algorithms
Composability of distributed algorithms
The Broadcast Problem

Best-effort broadcast
Reliable broadcast
Causal broadcast

Annette Bieniusa Programming Distributed Systems Summer Term 2019 2/ 31

Motivation

Annette Bieniusa Programming Distributed Systems Summer Term 2019 3/ 31

The Broadcast Problem

Informally: A process needs to transmit the same message m to N
other processes.

Assumptions

Complete set of processes in the system is known a-priori
Perfect-Point-2-Point Link Abstraction
Asynchronous system (no rounds, no failure detection)

Annette Bieniusa Programming Distributed Systems Summer Term 2019 4/ 31

What is the simplest solution that you can think of?

Just go ahead and send the message to everyone, one at a time.

Annette Bieniusa Programming Distributed Systems Summer Term 2019 5/ 31

What is the simplest solution that you can think of?

Just go ahead and send the message to everyone, one at a time.

Annette Bieniusa Programming Distributed Systems Summer Term 2019 5/ 31

Specifying the broadcast problem

Wait. . . How do you specify an algorithm for a process again?

⇒ Deterministic I/O automaton!

Annette Bieniusa Programming Distributed Systems Summer Term 2019 6/ 31

Specifying the broadcast problem

Wait. . . How do you specify an algorithm for a process again?

⇒ Deterministic I/O automaton!

Annette Bieniusa Programming Distributed Systems Summer Term 2019 6/ 31

Annette Bieniusa Programming Distributed Systems Summer Term 2019 7/ 31

The Anatomy of an Algorithm
Event driven interface

Upon Init do: ...
Upon Broadcast(m) do: ...
Upon Receive(p, m) do: ...

You can trigger an event on another layer:

trigger Send(q, m)
trigger Deliver(p, m)

There is a special event called Init for initializing the local state.
q denotes the target process when sending a message
p denotes the process where the message originated from

Annette Bieniusa Programming Distributed Systems Summer Term 2019 8/ 31

Best-effort Broadcast (BEB): Specification

BEB1 (Best-Effort Validity): For any two correct processes i and
j, every message broadcast by i is eventually delivered by j.
BEB2 (No Duplication): No message is delivered more than once.
BEB3 (No Creation): If a correct process j delivers a message m,
then m was broadcast to j by some process i.

Annette Bieniusa Programming Distributed Systems Summer Term 2019 9/ 31

Best-effort Broadcast: Algorithm
Idea:

Just go ahead and send the message to every other process.
When you get one of these messages, you deliver it to the upper
layer.

State: -- // could be omitted
Upon Init do: -- // could be omitted

Upon beb-Broadcast(m) do:
forall q ∈ Π:

trigger Send(q, m);

Upon Receive(p, m) do:
trigger beb-Deliver(p, m);

Annette Bieniusa Programming Distributed Systems Summer Term 2019 10/ 31

Best-effort Broadcast: Correctness

Why does it work?

BEB1 holds because Perfect-Point-2-Point links guarantee reliable
delivery (PL1)
BEB2 holds due to PL2, BEB3 holds due to PL3

Annette Bieniusa Programming Distributed Systems Summer Term 2019 11/ 31

Best-effort Broadcast: Scenario 1

Process A

Process B

Process C

m

m

m

Annette Bieniusa Programming Distributed Systems Summer Term 2019 12/ 31

Best-effort Broadcast: Scenario 2

Process A

Process B

Process C

m1

m1

m1

X

m2

Annette Bieniusa Programming Distributed Systems Summer Term 2019 13/ 31

Limitations of Best-effort Broadcast

What happens if a process fails while sending a message?

If the sender crashes before being able to send the message to all
processes, some process will not deliver the message.
Even in the absence of communication failures!

Let’s try for a stronger version of broadcast . . .

Annette Bieniusa Programming Distributed Systems Summer Term 2019 14/ 31

Limitations of Best-effort Broadcast

What happens if a process fails while sending a message?

If the sender crashes before being able to send the message to all
processes, some process will not deliver the message.
Even in the absence of communication failures!

Let’s try for a stronger version of broadcast . . .

Annette Bieniusa Programming Distributed Systems Summer Term 2019 14/ 31

Reliable Broadcast (RB): Specification

RB1 (Validity): If a correct process i broadcasts message m, then
i eventually delivers the message.
RB2 (No Duplications): No message is delivered more than once.
RB3 (No Creation): If a correct process j delivers a message m,
then m was broadcast to j by some process i.
RB4 (Agreement): If a message m is delivered by some correct
process i, then m is eventually delivered by every correct process
j.

Annette Bieniusa Programming Distributed Systems Summer Term 2019 15/ 31

Reliable Broadcast (RB): Scenario 1

Process A

Process B

Process C

m1

m1

m1

X

m2

Not possible under Reliable Broadcast: RB4 is violated!

Annette Bieniusa Programming Distributed Systems Summer Term 2019 16/ 31

Reliable Broadcast (RB): Scenario 1

Process A

Process B

Process C

m1

m1

m1

X

m2

Not possible under Reliable Broadcast: RB4 is violated!

Annette Bieniusa Programming Distributed Systems Summer Term 2019 16/ 31

Reliable Broadcast (RB): Scenario 2

Process A

Process B

Process C

m1

m1

m1

X

m2

m2

The fact that process A does not deliver m2 is not a problem, because
only correct processes are required to deliver their own messages (RB1).

Annette Bieniusa Programming Distributed Systems Summer Term 2019 17/ 31

Reliable Broadcast (RB): Scenario 2

Process A

Process B

Process C

m1

m1

m1

X

m2

m2

The fact that process A does not deliver m2 is not a problem, because
only correct processes are required to deliver their own messages (RB1).

Annette Bieniusa Programming Distributed Systems Summer Term 2019 17/ 31

Reliable Broadcast (RB): Scenario 3

Process A

Process B

Process C

m1

m1

m1

X

The fact that no process delivers m2 is not a problem, because process
A is faulty (RB1) and no process delivers m2 (RB4).

Annette Bieniusa Programming Distributed Systems Summer Term 2019 18/ 31

Reliable Broadcast (RB): Scenario 3

Process A

Process B

Process C

m1

m1

m1

X

The fact that no process delivers m2 is not a problem, because process
A is faulty (RB1) and no process delivers m2 (RB4).

Annette Bieniusa Programming Distributed Systems Summer Term 2019 18/ 31

Reliable Broadcast (RB): Scenario 4

Process A

Process B

Process C

m1

m1

m1

X

m2

m2

Annette Bieniusa Programming Distributed Systems Summer Term 2019 19/ 31

Reliable Broadcast (RB): Algorithm

State:
delivered //set of message ids that were already delivered

Upon Init do:
delivered <- ∅;

Upon rb-Broadcast(m) do
trigger rb-Deliver(self, m);
mid <- generateUniqueID(m);
delivered <- delivered ∪ {mid};
trigger beb-Broadcast([mid, m]);

Upon beb-Deliver(p, [mid, m]) do
if (mid /∈ delivered) then

delivered <- delivered ∪ {mid};
trigger rb-Deliver(p, m);
trigger beb-Broadcast([mid, m]);

Why is this algorithm correct?

Annette Bieniusa Programming Distributed Systems Summer Term 2019 20/ 31

Reliable Broadcast (RB): Correctness
RB1 (Validity): If a correct process i broadcasts message m, then
i eventually delivers the message.

Delivering the message is the first step when handling rb-Broadcast.
RB2 (No Duplications): No message is delivered more than once.

By handling the set of delivered messages.
RB3 (No Creation): If a correct process j delivers a message m,
then m was broadcast to j by some process i.

By BEB3.
RB4 (Agreement): If a message m is delivered by some correct
process i, then m is eventually delivered by every correct process
j.

Before rb-Delivering m, a correct process forwards m to all
processes. By BEB1 and p being correct, all correct processes will
eventually receive m and rb-Deliver it.

Annette Bieniusa Programming Distributed Systems Summer Term 2019 21/ 31

Reliable Broadcast (RB): Scenario 5

Process A

Process B

Process C

m1

m1

m1

X

X
m2

m2

The fact that m2 has been delivered by faulty A and B does not imply
that m2 has to be delivered by C as well. Yet, this situation is not
desirable, because two processes deliver something and another one
does not.

⇒ Interaction with external world!

Annette Bieniusa Programming Distributed Systems Summer Term 2019 22/ 31

Reliable Broadcast (RB): Scenario 5

Process A

Process B

Process C

m1

m1

m1

X

X
m2

m2

The fact that m2 has been delivered by faulty A and B does not imply
that m2 has to be delivered by C as well. Yet, this situation is not
desirable, because two processes deliver something and another one
does not.

⇒ Interaction with external world!

Annette Bieniusa Programming Distributed Systems Summer Term 2019 22/ 31

Uniform Reliable Broadcast - Specification

URB1 (Validity): If a correct process i broadcasts message m,
then i eventually delivers the message.
URB2 (No Duplications): No message is delivered more than once.
URB3 (No Creation): If a correct process j delivers a message m,
then m was broadcast to j by some process i.
URB4 (Uniform Agreement): If a message m is delivered by some
correct process i, then m is eventually delivered by every correct
process j.

Annette Bieniusa Programming Distributed Systems Summer Term 2019 23/ 31

Problem: Message ordering
Given the asynchronous nature of distributed systems, messages
may be delivered in any order.
Some services, such as replication, need messages to be delivered
in a consistent manner, otherwise replicas may diverge.

Annette Bieniusa Programming Distributed Systems Summer Term 2019 24/ 31

FIFO Order

If a process p broadcasts a message m before the same process
broadcasts another message m′, then no correct process q delivers m′

unless it has previously delivered m.

broadcastp(m) → broadcastp(m′) ⇒ deliverq(m) → deliverq(m′)

Annette Bieniusa Programming Distributed Systems Summer Term 2019 25/ 31

Causal Order

If the broadcast of a message m happens-before the broadcast of some
message m′, then no correct process delivers m′ unless it has previously
delivered m.

broadcastp(m) → broadcastq(m′) ⇒ deliverr(m) → deliverr(m′)

Annette Bieniusa Programming Distributed Systems Summer Term 2019 26/ 31

Total Order

If correct processes p and q both deliver messages m, m′, then p
delivers m before m′ if and only if q delivers m before m′.

deliverp(m) → deliverp(m′) ⇒ deliverq(m) → deliverq(m′)

Annette Bieniusa Programming Distributed Systems Summer Term 2019 27/ 31

Message ordering: Quizzzzz

Process A

Process B

Process C

m1

m1

m1

m2

m2

m2

Is this allowed under FIFO Order, Causal Order, Total Order?

Annette Bieniusa Programming Distributed Systems Summer Term 2019 28/ 31

Summary

Composability of distributed algorithms by stacking algorithms
Correctness proofs based on properties of underlying level +
algorithmic properties
Different variants of solution to the Broadcast Problem

Best-effort broadcast
Reliable broadcast
Uniform reliable broadcast
Causal broadcast (⇒ next lecture)
[Uniform causal broadcast]

Annette Bieniusa Programming Distributed Systems Summer Term 2019 29/ 31

Joe Armstrong († 20 April 2019)

Checkout Joe’s thesis[1] for lots of wisdom on building distributed systems!

Sketch by David Neal (http://reverentgeek.com/)

Annette Bieniusa Programming Distributed Systems Summer Term 2019 30/ 31

Further reading I

[1] Joe Armstrong. “Making reliable distributed systems in the
presence of software errors”. Diss. Royal Institute of Technology,
Stockholm, Sweden, 2003. url:
http://erlang.org/download/armstrong thesis 2003.pdf.

Annette Bieniusa Programming Distributed Systems Summer Term 2019 31/ 31

http://erlang.org/download/armstrong_thesis_2003.pdf

	Motivation

