
Programming Distributed Systems
03 Causality and Vector clocks

Annette Bieniusa, Peter Zeller

AG Softech
FB Informatik

TU Kaiserslautern

Summer Term 2019

Annette Bieniusa, Peter Zeller Programming Distributed Systems Summer Term 2019 1/ 25

Motivation
Causality is fundamental to many problems occurring in
distributed computing
Examples: Determining a consistent recovery point, detecting race
conditions, exploitation of parallelism
The happens-before relation of events is often also called causality
relation [1].

An event e may causally affect another event e′ if and only if e→ e′.

The happens-before order → indicates only potential causal
relationship.
Tracking whether an event indeed is a cause of another event is
much more involved and requires more complex dependency
analysis.

Annette Bieniusa, Peter Zeller Programming Distributed Systems Summer Term 2019 2/ 25

Overview

Causal Broadcast
Causality Tracking with Vector clocks
Causal Broadcast revisited

Annette Bieniusa, Peter Zeller Programming Distributed Systems Summer Term 2019 3/ 25

(Reliable) Causal Broadcast (RCO): Specification

RB1 - RB4 from reliable broadcast
CB (Causal delivery): No process p delivers a message m′ unless p
has already delivered every message m such that m→ m′.

Annette Bieniusa, Peter Zeller Programming Distributed Systems Summer Term 2019 4/ 25

Causal Broadcast (RCO): Algorithm 1 (No-waiting)
State:

delivered //set of messages ids that were already rcoDelivered
past // ordered set that it has rco-Broadcast or rco-Delivered

Upon Init do:
delivered <- ∅;
past <- ∅;

Upon rco-Broadcast(m) do
mid <- generateUniqueID(m);
trigger rb-Broadcast([mid , past, m]);
past <- past ∪ {(self, mid, m)}; // ordered after prior entries

Upon rb-Deliver(p, [mid, pastm, m]) do
if (mid /∈ delivered) then

forall (sn, nid, n) in pastm do // deterministic order!
if (nid /∈ delivered) then
trigger rco-Deliver(sn, n);
delivered <- delivered ∪ {nid};
past <- past ∪ {(sn, nid, n)};

trigger rco-Deliver(p, m);
delivered <- delivered ∪ {mid};
past <- past ∪ {(p, mid, m)};

Annette Bieniusa, Peter Zeller Programming Distributed Systems Summer Term 2019 5/ 25

Causal Broadcast: Scenario 1

Process A

Process B

Process C

m1

m1

m1

m2

m2

m2

Annette Bieniusa, Peter Zeller Programming Distributed Systems Summer Term 2019 6/ 25

Remarks
Message id’s could be reused for RB broadcast
pastm of a message includes all messages that causally precede m
Message from causal past of m are delivered before message m
Size of messages grows linearly with every message that is
broadcast since it includes the complete causal past
Idea: Garbage collect the causal past

If we know when a process fails (i.e., under the Fail-stop model),
we can remove messages from the causal past
When a process rb-Delivers a message m, it rb-Broadcasts an
acknowledgement message to all other processes
When an acknowledgement for message m has been rbDelivered by
all correct processes, m is removed from past
N2 additional ack messages for each data message
Typically, acknowledgements are grouped and processed in batch
mode

Annette Bieniusa, Peter Zeller Programming Distributed Systems Summer Term 2019 7/ 25

Causality tracking with Vector clocks

Annette Bieniusa, Peter Zeller Programming Distributed Systems Summer Term 2019 8/ 25

Causal Histories
We here distinguish three types of events occurring in a process:

Send events
Receive events
Local / internal events

Let Ei denote the set of events occurring at process pi and E the
set of all executed events:

E = E1 ∪ · · · ∪ En

The causal history of an event e ∈ E is defined as

C(e) = {e′ ∈ E | e′ → e} ∪ {e}

Note: Just a different representation of happens-before:

e′ → e ⇔ e′ 6= e ∧ e′ ∈ C(e)

Annette Bieniusa, Peter Zeller Programming Distributed Systems Summer Term 2019 9/ 25

Example: Causal history of b3

Process A

Process B

Process C

a1 a2 a3

b1 b2 b3 b4

c1 c2 c3 c4

C(b3) = {a1, b1, b2, b3, c1, c2}

Annette Bieniusa, Peter Zeller Programming Distributed Systems Summer Term 2019 10/ 25

Tracking causal histories

Each process pi stores current causal history as set of events Ci.

Initially, Ci ← ∅
On each local event e at process pi, the event is added to the set:

Ci ← Ci ∪ {e}

On sending a message m, pi updates Ci as for a local event and
attaches the new value of Ci to m.
On receiving message m with causal history C(m), pi updates C
as for a local event. Next, pi adds the causal history from C(m):

Ci ← Ci ∪ C(m)

Annette Bieniusa, Peter Zeller Programming Distributed Systems Summer Term 2019 11/ 25

Example: Causal histories

Process A

Process B

Process C

a1 a2 a3

b1 b2 b3 b4

c1 c2 c3 c4

{a1}

{c1}

{a1, a2}

{c1, c2}

{a1, b1}{a1, b1, b2, c1, c2} {a1, b1, b2, b3, c1, c2}
a1,

b1, b2, b3, b4,
c1, c2, c3, c4



Annette Bieniusa, Peter Zeller Programming Distributed Systems Summer Term 2019 12/ 25

Example: Causal histories

Process A

Process B

Process C

a1 a2 a3

b1 b2 b3 b4

c1 c2 c3 c4

{a1}

{c1}

{a1, a2}

{c1, c2}

{a1, b1}{a1, b1, b2, c1, c2} {a1, b1, b2, b3, c1, c2}
a1,

b1, b2, b3, b4,
c1, c2, c3, c4



Annette Bieniusa, Peter Zeller Programming Distributed Systems Summer Term 2019 12/ 25

Example: Causal histories

Process A

Process B

Process C

a1 a2 a3

b1 b2 b3 b4

c1 c2 c3 c4

{a1}

{c1}

{a1, a2}

{c1, c2}

{a1, b1}{a1, b1, b2, c1, c2} {a1, b1, b2, b3, c1, c2}
a1,

b1, b2, b3, b4,
c1, c2, c3, c4



Annette Bieniusa, Peter Zeller Programming Distributed Systems Summer Term 2019 12/ 25

Example: Causal histories

Process A

Process B

Process C

a1 a2 a3

b1 b2 b3 b4

c1 c2 c3 c4

{a1}

{c1}

{a1, a2}

{c1, c2}

{a1, b1}

{a1, b1, b2, c1, c2} {a1, b1, b2, b3, c1, c2}
a1,

b1, b2, b3, b4,
c1, c2, c3, c4



Annette Bieniusa, Peter Zeller Programming Distributed Systems Summer Term 2019 12/ 25

Example: Causal histories

Process A

Process B

Process C

a1 a2 a3

b1 b2 b3 b4

c1 c2 c3 c4

{a1}

{c1}

{a1, a2}

{c1, c2}

{a1, b1}{a1, b1, b2, c1, c2}

{a1, b1, b2, b3, c1, c2}
a1,

b1, b2, b3, b4,
c1, c2, c3, c4



Annette Bieniusa, Peter Zeller Programming Distributed Systems Summer Term 2019 12/ 25

Example: Causal histories

Process A

Process B

Process C

a1 a2 a3

b1 b2 b3 b4

c1 c2 c3 c4

{a1}

{c1}

{a1, a2}

{c1, c2}

{a1, b1}{a1, b1, b2, c1, c2} {a1, b1, b2, b3, c1, c2}


a1,

b1, b2, b3, b4,
c1, c2, c3, c4



Annette Bieniusa, Peter Zeller Programming Distributed Systems Summer Term 2019 12/ 25

Example: Causal histories

Process A

Process B

Process C

a1 a2 a3

b1 b2 b3 b4

c1 c2 c3 c4

{a1}

{c1}

{a1, a2}

{c1, c2}

{a1, b1}{a1, b1, b2, c1, c2} {a1, b1, b2, b3, c1, c2}
a1,

b1, b2, b3, b4,
c1, c2, c3, c4



Annette Bieniusa, Peter Zeller Programming Distributed Systems Summer Term 2019 12/ 25

Example: Causal histories

Process A

Process B

Process C

a1 a2 a3

b1 b2 b3 b4

c1 c2 c3 c4

{a1}

{c1}

{a1, a2}

{c1, c2}

{a1, b1}{a1, b1, b2, c1, c2} {a1, b1, b2, b3, c1, c2}
a1,

b1, b2, b3, b4,
c1, c2, c3, c4


Can we represent causal histories more efficiently?

Annette Bieniusa, Peter Zeller Programming Distributed Systems Summer Term 2019 12/ 25

Example: Efficient representation of causal histories

Process A

Process B

Process C

a1 a2 a3

b1 b2 b3 b4

c1 c2 c3 c4

[1, 0, 0]

[0, 0, 1]

[2, 0, 0]

[0, 0, 2]

[1, 1, 0] [1, 2, 2] [1, 3, 2]

[1, 4, 4]

Annette Bieniusa, Peter Zeller Programming Distributed Systems Summer Term 2019 13/ 25

Efficient representation of causal histories

Vector clock V (e) as efficient representation of C(e).
Vector clock is a mapping from processes to natural numbers:

Example: [p1 7→ 3, p2 7→ 4, p3 7→ 1]
If processes are numbered 1, . . . , n, this mapping can be
represented as a vector, e.g. [3, 4, 1]
Intuitively: p1 7→ 3 means “observed 3 events from process p1”

Annette Bieniusa, Peter Zeller Programming Distributed Systems Summer Term 2019 14/ 25

Formal Construction
Assume processes are numbered 1, . . . , n
Let Ek = {ek1 , ek2 , . . . } be the events of process k

Totally ordered: ek1 → ek2 , ek2 → ek3 , . . .

Let C(e)[k] = C(e) ∩ Ek denote the projection of C(E) on
process k.

C(e) = C(e)[1] ∪ · · · ∪ C(e)[n]

Now, if ekj
∈ C(e)[k], then by definition it holds that

ek1 , . . . , ekj
∈ C(e)[k]

The set C(e)[k] is thus sufficiently characterized by the largest
index of its events, i.e. its cardinality!
Summarize C(e) by an n-dimensional vector V (e) such that for
k = 1, . . . , n:

V (e)[k] = |C(e)[k]|

Annette Bieniusa, Peter Zeller Programming Distributed Systems Summer Term 2019 15/ 25

Note: Both representations are lattices with a lower bound

Operator Causal history Vector clock

⊥ ∅ λi. 0
A ≤ B A ⊆ B ∀i. A[i] ≤ B[i]
A ≥ B A ⊇ B ∀i. A[i] ≥ B[i]
A tB A ∪B λi. max(A[i], B[i])
A uB A ∩B λi. min(A[i], B[i])

⊥: bottom, or smallest element
A tB: least upper bound, or join, or supremum
A uB: greatest lower bound, or meet, or infimum

Annette Bieniusa, Peter Zeller Programming Distributed Systems Summer Term 2019 16/ 25

Tracking causal histories

Each process pi stores current causal history as set of events Ci.

Initially, Ci ← ∅
On each local event e at process pi, the event is added to the set:
Ci ← Ci ∪ {e}
On sending a message m, pi updates Ci as for a local event and
attaches the new value of Ci to m.
On receiving message m with causal history C(m), pi updates Ci

as for a local event. Next, pi adds the causal history from C(m):

Ci ← Ci ∪ C(m)

Annette Bieniusa, Peter Zeller Programming Distributed Systems Summer Term 2019 17/ 25

Tracking causal histories

Each process pi stores current causal history as set of events Ci.

Initially, Ci ← ⊥
On each local event e at process pi, the event is added to the set:
Ci ← Ci ∪ {e}
On sending a message m, pi updates Ci as for a local event and
attaches the new value of Ci to m.
On receiving message m with causal history C(m), pi updates Ci

as for a local event. Next, pi adds the causal history from C(m):

Ci ← Ci t C(m)

Annette Bieniusa, Peter Zeller Programming Distributed Systems Summer Term 2019 18/ 25

Vector time

Each process pi stores current causal history as a vector clock Vi.

Initially, Vi[k]← ⊥
On each local event, process pi increments its own entry in Vi as
follows: Vi[i]← Vi[i] + 1
On sending a message m, pi updates Vi as for a local event and
attaches new value of Vi to m.
On receiving message m with vector time V (m), pi increments its
own entry as for a local event. Next, pi updates its current Vi by
joining V (m) and Vi:

Vi ← Vi[k] t V (m)

Annette Bieniusa, Peter Zeller Programming Distributed Systems Summer Term 2019 19/ 25

Relating vector times

Let u, v denote time vectors. We say that

u ≤ v iff u[k] ≤ u[k] for k = 1, . . . , n
u < v iff u ≤ v and u 6= v
u ‖ v iff neither u ≤ v nor v ≤ u

For two events e and e′, it holds that e→ e′ ⇔ V (e) < V (e′)

Proof: By construction.

Annette Bieniusa, Peter Zeller Programming Distributed Systems Summer Term 2019 20/ 25

How does vector time relate to Lamport timestamps?

Both are logical clocks, counting events.
Lamport time (and real time) are insufficient to characterize
causality and can’t be used to prove that events are not causally
related

Annette Bieniusa, Peter Zeller Programming Distributed Systems Summer Term 2019 21/ 25

Causal Broadcast (RCO): Algorithm 2 (Waiting)

State:
pending //set of messages that cannot be delivered yet
VC // vector clock

Upon Init do:
pending <- ∅;
forall pi ∈ Π do: VC[pi] <- 0;

Upon rco-Broadcast(m) do
trigger rco-Deliver(self, m);
trigger rb-Broadcast(VC, m);
VC[self] <- VC[self] + 1;

Upon rb-Deliver(p, VCm, m) do
if (p 6= self) then

pending <- pending ∪ {(p, VCm, m)};
while exists (q, VCmq, mq) ∈ pending, such that VC ≥ VCmq do

pending <- pending \ {(q, VCmq, mq)};

trigger rco-Deliver(q, mq);
VC[q] <- VC[q] + 1;

Question: Why is it called “waiting”?

Annette Bieniusa, Peter Zeller Programming Distributed Systems Summer Term 2019 22/ 25

Causal Broadcast (RCO): Algorithm 2 (Waiting)

State:
pending //set of messages that cannot be delivered yet
VC // vector clock

Upon Init do:
pending <- ∅;
forall pi ∈ Π do: VC[pi] <- 0;

Upon rco-Broadcast(m) do
trigger rco-Deliver(self, m);
trigger rb-Broadcast(VC, m);
VC[self] <- VC[self] + 1;

Upon rb-Deliver(p, VCm, m) do
if (p 6= self) then

pending <- pending ∪ {(p, VCm, m)};
while exists (q, VCmq, mq) ∈ pending, such that VC ≥ VCmq do

pending <- pending \ {(q, VCmq, mq)};

trigger rco-Deliver(q, mq);
VC[q] <- VC[q] + 1;

Question: Why is it called “waiting”?Annette Bieniusa, Peter Zeller Programming Distributed Systems Summer Term 2019 22/ 25

Limitations of Causal Broadcast

Processes can observe messages in different order!

Example: Replicated database handling bank accounts

Initially, account A holds 1000 Euro.
User deposits 150 Euro, triggers broadcast of message
m1 = 'add 150 Euro to A'

Concurrently, bank initiates broadcast of message
m2 = 'add 2% interest to A'

Diverging state!

⇒ Later lecture: Atomic broadcast!

Annette Bieniusa, Peter Zeller Programming Distributed Systems Summer Term 2019 23/ 25

Summary

Causality important for many scenarios
Causality not always sufficient
Vector clocks:

Efficient representation of causal histories / happens-before
How many events from which process?

Causal broadcast: Use vector clocks to deliver in causal order

Annette Bieniusa, Peter Zeller Programming Distributed Systems Summer Term 2019 24/ 25

Further reading I

[1] Reinhard Schwarz und Friedemann Mattern. “Detecting Causal
Relationships in Distributed Computations: In Search of the Holy
Grail”. In: Distributed Computing 7.3 (1994), S. 149–174. doi:
10.1007/BF02277859. url:
https://doi.org/10.1007/BF02277859.

Annette Bieniusa, Peter Zeller Programming Distributed Systems Summer Term 2019 25/ 25

https://doi.org/10.1007/BF02277859
https://doi.org/10.1007/BF02277859

	Causality tracking with Vector clocks

