
Programming Distributed Systems
04 Replication

Annette Bieniusa, Peter Zeller

AG Softech
FB Informatik

TU Kaiserslautern

Summer Term 2019

Annette Bieniusa, Peter Zeller Programming Distributed Systems Summer Term 2019 1/ 35

Motivation

Replication is a core problem in distributed systems. [2, Sec
15.1-15.3]
Why do we want to replicate services or data?

Performance: If there are many clients issuing operations, a single
process might not be enough to handle the whole load with
adequate response time. Further, keeping data close to clients
reduces the network latency when handling requests.
Availability: Despite server failures and network partitions, clients
can still interact with the system (potentially operating with stale /
conflicting / . . . data).
Fault-tolerance: Despite faults, the systems behaves correctly;
e.g. it does not loose information.

We can replicate computations and state (focus of this lecture)

Annette Bieniusa, Peter Zeller Programming Distributed Systems Summer Term 2019 2/ 35

State Machine Replication

A process has a state S, and a set of operations
Ops = {Op1, Op2, . . . } that either return (read, query) or modify
(write, update) that state.
Clients invoke operations from the set Ops over the system.
The process is replicated, i.e. there are multiple copies / instances
of the same process.

Annette Bieniusa, Peter Zeller Programming Distributed Systems Summer Term 2019 3/ 35

Replication Algorithm

A replication algorithm is responsible for managing the multiple
replicas of the process

under a given fault model
under a given synchronization model

In essence, the replication algorithm will enforce properties on the
effects of operations observed by clients given the evolution of the
system (potentially including the evolution the clients).

Annette Bieniusa, Peter Zeller Programming Distributed Systems Summer Term 2019 4/ 35

Desirable properties: Transparency + Consistency
Clients should not be aware that multiple replicas (might) exist.
When interacting with the system, a client should only observe a
single logical state.
The behavior of this logical state must be in accordance with its
correctness specification.

Client

S1

Replica 1

S2

Replica 2

S3

Replica 3Response

Op

⇒ Need to restrict the state that can be observed by a client!

Annette Bieniusa, Peter Zeller Programming Distributed Systems Summer Term 2019 5/ 35

Solution 1: Coordinating proxy

Client

S1

Replica 1

S2

Replica 2

S3

Replica 3

Proxy
Response

Op

Annette Bieniusa, Peter Zeller Programming Distributed Systems Summer Term 2019 6/ 35

Solution 2: Only one replica interacts with the client

Client S1

Replica 1
S2

Replica 2

S3

Replica 3
Response

Op

Annette Bieniusa, Peter Zeller Programming Distributed Systems Summer Term 2019 7/ 35

Replication strategies

Active Replication: Operations are executed by every replica.
Passive Replication: Operations are executed by a single replica,
results are shipped to other replicas.

Synchronous Replication: Replication takes place before the
client gets a response.
Asynchronous Replication: Replication takes place after the
client gets a response.

Single-Master (also known as Master-Slave): A single replica
receives operations that modify the state from clients.
Multi-Master: Any replica can process any operation.

Annette Bieniusa, Peter Zeller Programming Distributed Systems Summer Term 2019 8/ 35

Active Replication

All replicas execute operations.
State is continuously updated at every replica ⇒ Lower impact of
a replica failure
Can only be used when operations are deterministic (i.e., they do
not depend on non-deterministic variables, such as local time, or
generating a random value).
If operations are not commutative (i.e., execution of the same set
of operations in different orders lead to different results), then all
replicas must agree on the order operations are executed.

Annette Bieniusa, Peter Zeller Programming Distributed Systems Summer Term 2019 9/ 35

Passive Replication

Appropriate when operations depend on non-deterministic data or
inputs (random number, local replica time, etc.)
Load across replicas is not balanced.

Only one replica effectively executes the (update) operation and
computes the result.
Other replicas only observe results to update their local state.

Annette Bieniusa, Peter Zeller Programming Distributed Systems Summer Term 2019 10/ 35

Synchronous Replication

Client

Replica A

Replica B

Replica C

Strong durability guarantees: Tolerates faults of N − 1 servers
Request will be served as fast as the slowest server
Response time is further influenced by network latency

Annette Bieniusa, Peter Zeller Programming Distributed Systems Summer Term 2019 11/ 35

Synchronous Replication

Client

Replica A

Replica B

Replica C

Strong durability guarantees: Tolerates faults of N − 1 servers
Request will be served as fast as the slowest server
Response time is further influenced by network latency

Annette Bieniusa, Peter Zeller Programming Distributed Systems Summer Term 2019 11/ 35

Asynchronous replication
Client

Replica A

Replica B

Replica C

Replica immediately sends back response and propagates the
updates later.
Client does not need to wait.
Tolerant to network latencies
Problem: Data loss if the replica A goes down before forwarding
the update!

Annette Bieniusa, Peter Zeller Programming Distributed Systems Summer Term 2019 12/ 35

Asynchronous replication
Client

Replica A

Replica B

Replica C

Replica immediately sends back response and propagates the
updates later.
Client does not need to wait.
Tolerant to network latencies
Problem: Data loss if the replica A goes down before forwarding
the update!

Annette Bieniusa, Peter Zeller Programming Distributed Systems Summer Term 2019 12/ 35

Single-copy (Master-slave, Primary-backup, Log Shipping)

Only a single replica, called the master/leader/coordinator,
processes operations that modify the state.
Other replicas can process client operations that only observe the
state (read operations).
Problems:

Clients might observe stale values!
Susceptible to lost updates or incorrect updates if nodes fail at
inopportune times!

When the master fails, someone has to take over the role of
master.
If two processes believe themselves to be the master, safety
properties might be violated.

Annette Bieniusa, Peter Zeller Programming Distributed Systems Summer Term 2019 13/ 35

Multi-master Systems

Any replica can process any operation (i.e, both read and update
operations).
All replicas behave in the same way ⇒ better load balancing
Problem: Divergence

Multiple replicas might attempt to perform conflicting operations
at the same time, which requires some form of coordination
(e.g. distributed locks or other coordination protocols) that
typically are expensive.

Annette Bieniusa, Peter Zeller Programming Distributed Systems Summer Term 2019 14/ 35

Preventing divergence in multi-master systems
Idea: Execute all operations in the same order on all replicas

⇒ Atomic broadcast (aka Total order broadcast)

Properties:

Validity: If a correct process a-broadcasts message m, then it
eventually a-delivers m.
Agreement: If a correct process a-delivers message m, then all
correct processes eventually a-deliver m.
Integrity: For any message m, every process a-deliveres m at most
once, and only if m was previously a-broadcast.
Total order: If some process a-delivers message m before message
m′, then every process a-delivers m′ only after it has a-delivered
m.

Annette Bieniusa, Peter Zeller Programming Distributed Systems Summer Term 2019 15/ 35

Preventing divergence in multi-master systems
Idea: Execute all operations in the same order on all replicas

⇒ Atomic broadcast (aka Total order broadcast)

Properties:

Validity: If a correct process a-broadcasts message m, then it
eventually a-delivers m.
Agreement: If a correct process a-delivers message m, then all
correct processes eventually a-deliver m.
Integrity: For any message m, every process a-deliveres m at most
once, and only if m was previously a-broadcast.
Total order: If some process a-delivers message m before message
m′, then every process a-delivers m′ only after it has a-delivered
m.

Annette Bieniusa, Peter Zeller Programming Distributed Systems Summer Term 2019 15/ 35

Implementing Atomic Broadcast
We rely on the consensus abstraction to implement atomic broadcast.

Each process pi has an initial value vi (propose(vi)).
All processors have to agree on common value v that is the initial value
of some pi (decide(v)).

Properties of Consensus:

Agreement: Every correct process must agree on the same value.
Integrity: Every correct process decides at most one value, and if it
decides some value, then it must have been proposed by some process.
Termination: All processes eventually reach a decision.
Validity: If all correct processes propose the same value v, then all
correct processes decide v.

Annette Bieniusa, Peter Zeller Programming Distributed Systems Summer Term 2019 16/ 35

Atomic Broadcast: Algorithm
State:
k // consensus number
delivered // messages a-delivered by process
received // messages received by process

Upon Init do:
k <- 0;
delivered <- ∅;
received <- ∅;

Upon a-Broadcast(m) do
trigger rb-Broadcast(m);

Upon rb-Deliver(m) do
if (m /∈ received) then received <- received ∪ {m};

Upon received \ delivered 6= ∅ do
k <- k + 1;
undelivered <- received \ delivered;
propose(k, undelivered);

wait until decide(k, msgk)

∀ m in msgk in deterministic order do trigger a-Deliver(m)

delivered <- delivered ∪ msgk

Annette Bieniusa, Peter Zeller Programming Distributed Systems Summer Term 2019 17/ 35

Every process executes a sequence of consensus, numbered 1, 2,
. . .
Initial value for each consensus for the process is the set of
messages received by p, but not yet a-delivered.
msgk is the set of messages decided by consensus numbered k

Each process a-delivers the messages in msgk before the messages
in msgk+1

More than one message may get a-delivered by one instance of
consensus!

Annette Bieniusa, Peter Zeller Programming Distributed Systems Summer Term 2019 18/ 35

Equivalence of Atomic Broadcast and Consensus

One can build Atomic Broadcast with Consensus.
One can build Consensus with Atomic Broadcast (how?).

Consensus and Atomic Broadcast are equivalent problems in a system
with reliable channels.

Annette Bieniusa, Peter Zeller Programming Distributed Systems Summer Term 2019 19/ 35

Question

How do you solve consensus in

an asynchronous model
with crash-fault
and (at least) one failing process?

Annette Bieniusa, Peter Zeller Programming Distributed Systems Summer Term 2019 20/ 35

Annette Bieniusa, Peter Zeller Programming Distributed Systems Summer Term 2019 21/ 35

The FLP Theorem

2001 Dijkstra prize for the most influential paper in distributed
computing

Theorem[3]
There is no deterministic protocol that solves consensus in an
asynchronous system in which a single process may fail by crashing.

Annette Bieniusa, Peter Zeller Programming Distributed Systems Summer Term 2019 22/ 35

Proof Idea

Idea: We construct a run where
at most one process is faulty
every message is eventually delivered
but no processor eventually decides

We will now present the essential steps in the proof.

Annette Bieniusa, Peter Zeller Programming Distributed Systems Summer Term 2019 23/ 35

FLP: System model

We will use here a slightly different model that simplifies the proof.

N ≥ 2 processes which communicate by sending messages
Message (p, m) where p is receiver and m content of the message
Message are stored in abstract message buffer

send(p, m) places message in buffer
receive(p) randomly removes a message from buffer and hands it
to p or hands “empty message” to p

This model describes an asynchronous message delivery with
arbitrary delay!
Requirement: Every message is eventually delivered (i.e. no
message loss)

Annette Bieniusa, Peter Zeller Programming Distributed Systems Summer Term 2019 24/ 35

FLP: Configurations

A configuration is the internal state of all processors + contents
of message buffer.
In each step, a processor p performs a receive(p), updates its
state deterministically, and potentially sends messages. We call
such a step an event e.
An execution is defined as a (possibly infinite) sequence of events,
starting from some initial configuration C.

Annette Bieniusa, Peter Zeller Programming Distributed Systems Summer Term 2019 25/ 35

FLP: Assumptions

Termination: All correct nodes eventually decide.
Agreement: In every config, decided nodes have decided on the
same value (here: 0 or 1).
Non-triviality (Weak Validity):

There exists one possible input config with outcome decision 0, and
There exists one possible input config with outcome decision 1

For example, input “0,0,1” → 0 while “0,1,1” → 1
Validity implies non-triviality (”0,0,0” must → 0 and ”1,1,1” must
→ 1)

Annette Bieniusa, Peter Zeller Programming Distributed Systems Summer Term 2019 26/ 35

FLP: Bivalent Configurations

0-decided configuration: A configuration with decide ”0” on some
process
1-decided configuration: A configuration with decide ”1” on some
process

0-valent configuration: A config in which every reachable decided
configuration is a 0-decide
1-valent configuration: A config in which every reachable decided
configuration is a 1-decide

Bivalent configuration: A configuration which can reach a
0-decided and 1-decided configuration

Annette Bieniusa, Peter Zeller Programming Distributed Systems Summer Term 2019 27/ 35

FLP: Bivalent Initial Configuration

Lemma 1
Any algorithm that solves consensus with at most one faulty process
has an initial bivalent configuration.

Annette Bieniusa, Peter Zeller Programming Distributed Systems Summer Term 2019 28/ 35

FLP: Staying Bivalent

Lemma 2
Given any bivalent config C and any event e applicable in C, there
exists a reachable config C ′ where e is applicable, and e(C ′) is bivalent.

C
bivalent

... C
bivalent

...

... C’

...
bivalent

e e

e

Annette Bieniusa, Peter Zeller Programming Distributed Systems Summer Term 2019 29/ 35

FLP: Proof of Theorem

1 Start in an initial bivalent config. [This configuration must exist
according to Lemma 1.]

2 Given the bivalent config, pick an event e that has been applicable
longest.

Pick the path which takes the system to another config where e is
applicable (might be empty).
Apply e, and get a bivalent config [applying Lemma 2].

3 Repeat 2.

Termination violated.

Annette Bieniusa, Peter Zeller Programming Distributed Systems Summer Term 2019 30/ 35

What now?

Annette Bieniusa, Peter Zeller Programming Distributed Systems Summer Term 2019 31/ 35

Impossibility of Consensus is different from the halting
problem! Or isn’t it?In reality, scheduling of processes is rarely done in the most

unfavorable way.
The problem caused by an unfavorable schedule is transient, not
permanent.
Re-formulation of consensus impossibility:

Any algorithm that ensures the safety properties of consensus can be
delayed indefinitely during periods with no synchrony. “ ##
Circumventing FLP
Obviously, by relaxing the specification of consensus . . .

Agreement: Every correct process must agree on the same value.
Integrity: Every correct process decides at most one value, and if
it decides some value, then it must have been proposed by some
process.
Termination: All processes eventually reach a decision.
Validity: If all correct processes propose the same value V , then
all correct processes decide V .

Annette Bieniusa, Peter Zeller Programming Distributed Systems Summer Term 2019 32/ 35

Impossibility of Consensus is different from the halting
problem! Or isn’t it?In reality, scheduling of processes is rarely done in the most

unfavorable way.
The problem caused by an unfavorable schedule is transient, not
permanent.
Re-formulation of consensus impossibility:

Any algorithm that ensures the safety properties of consensus can be
delayed indefinitely during periods with no synchrony. “ ##
Circumventing FLP
Obviously, by relaxing the specification of consensus . . .

Agreement: Every correct process must agree on the same value.
Integrity: Every correct process decides at most one value, and if
it decides some value, then it must have been proposed by some
process.
Termination: All processes eventually reach a decision.
Validity: If all correct processes propose the same value V , then
all correct processes decide V .

Annette Bieniusa, Peter Zeller Programming Distributed Systems Summer Term 2019 32/ 35

Different approaches

Idea 1: Use a probabilistic algorithm that ensures termination with
high probability.
Idea 2: Relax on agreement and validity.
Idea 3: Only ensure termination if the system behaves in a
synchronous way.

Annette Bieniusa, Peter Zeller Programming Distributed Systems Summer Term 2019 33/ 35

Summary

Replication is one of the key problems in distributed systems[1].
Characterization of replication schemes

active/passive
synchronous/asynchronous
single-/multi-master

Problem: Divergence of replicas
Atomic Broadcast and Consensus
FLP Theorem

Next lecture: The Consistency Spectrum

Annette Bieniusa, Peter Zeller Programming Distributed Systems Summer Term 2019 34/ 35

[1] Bernadette Charron-Bost, Fernando Pedone und André Schiper,
Hrsg. Replication: Theory and Practice. Bd. 5959. Lecture Notes
in Computer Science. Springer, 2010. isbn: 978-3-642-11293-5.
doi: 10.1007/978-3-642-11294-2. url:
https://doi.org/10.1007/978-3-642-11294-2.

[2] George Coulouris u. a. Distributed Systems: Concepts and Design.
5th. USA: Addison-Wesley Publishing Company, 2011.

[3] Michael J. Fischer, Nancy A. Lynch und Mike Paterson.
“Impossibility of Distributed Consensus with One Faulty Process”.
In: J. ACM 32.2 (1985), S. 374–382. doi: 10.1145/3149.214121.
url: http://doi.acm.org/10.1145/3149.214121.

Annette Bieniusa, Peter Zeller Programming Distributed Systems Summer Term 2019 35/ 35

https://doi.org/10.1007/978-3-642-11294-2
https://doi.org/10.1007/978-3-642-11294-2
https://doi.org/10.1145/3149.214121
http://doi.acm.org/10.1145/3149.214121

	What now?

