
Programming Distributed Systems
05 Consistency

Annette Bieniusa

AG Softech
FB Informatik

TU Kaiserslautern

Summer Term 2019

Annette Bieniusa Programming Distributed Systems Summer Term 2019 1/ 49

KIDS OUT OF CONTROL?

Inconsistency might be the problem!

Annette Bieniusa Programming Distributed Systems Summer Term 2019 2/ 49

KIDS OUT OF CONTROL?

Inconsistency might be the problem!
Annette Bieniusa Programming Distributed Systems Summer Term 2019 2/ 49

KIDS OUT OF CONTROL?

Inconsistency might be the problem!
Annette Bieniusa Programming Distributed Systems Summer Term 2019 2/ 49

Roadmap

What is consistency?
How can we define and distinguish between different notions of
consistency?
What implications does a consistency model have for an
application?

All material and graphics in this section are based on material by
Sebastian Burkhardt (Microsoft Research)[1] and the survey by Paolo
Viotti and Marko Vukolic [3].

Annette Bieniusa Programming Distributed Systems Summer Term 2019 3/ 49

Consistency

Distributed systems: “Consistency” refers to the observable be-
haviour of a system (e.g. a data store).
Consistency model defines the correct behavior when interacting
with the system.

. . . #### Remark: Consistency in Database systems - The

distributed systems and database communities use the same word,
consistency, with different meanings. - Roughly the same concept is
called “isolation”, whereas the term “consistency” refers to the
property that application code is sequentially safe (the C in ACID).

Annette Bieniusa Programming Distributed Systems Summer Term 2019 4/ 49

Example: “Single-Value Register”

Operations rd()→ v and wr(v)→ ok
System architecture:

Annette Bieniusa Programming Distributed Systems Summer Term 2019 5/ 49

Implementation 1: Single-copy Register

Single replica of shared register
Forward all read and write requests

Annette Bieniusa Programming Distributed Systems Summer Term 2019 6/ 49

Implementation 2: Epidemic Register

Each replica stores a timestamped value
Reads return the currently stored value; writes update this value,
stamped with current time (e.g. logical clock)
At random times, replicas send stored timestamped value to arbitrary
subset of replicas
When receiving timestamped value, replica replaces locally stored value
if incoming timestamp is later

Annette Bieniusa Programming Distributed Systems Summer Term 2019 7/ 49

Question

Can clients observe a difference between the two implementations
(single-copy vs. epidemic)?

Assumptions:

Asynchronous communication
Fairness of transport
“Randomly” generated values

Annette Bieniusa Programming Distributed Systems Summer Term 2019 8/ 49

Notions of consistency

Single-Copy Register: Linearizability
Epidemic Register: Sequential Consistency

When generalized to key-value stores (i.e. collection of registers), the
epidemic variant guarantees Eventual Consistency (if sending a
randomly selected tuple in each message) or Causal Consistency (if
sending all tuples in each message).

Annette Bieniusa Programming Distributed Systems Summer Term 2019 9/ 49

Consistency model

Required for any type of storage (system) that processes
operations concurrently.
Unless the consistency model is linearizability (= single-copy
semantics), applications may observe non-sequential behaviors
(often called anomalies).
The set of possible behaviors, and conversely of possible
anomalies, constitutes the consistency model.

Annette Bieniusa Programming Distributed Systems Summer Term 2019 10/ 49

Consistency specifications

Annette Bieniusa Programming Distributed Systems Summer Term 2019 11/ 49

What is a replicated shared object / service?

Examples: REST Service, file system, key-value store, counters,
registers, . . .
Formally specified by a set of operations Op and either

a sequential semantics S, or
a concurrent semantics F

Annette Bieniusa Programming Distributed Systems Summer Term 2019 12/ 49

Sequential semantics

S : Op∗ ×Op→ V al

Sequence of all prior operations (“current state”)
Operation to be performed
Returned value

Example: Register

S(ε, rd) = undef (read without prior write is undefined)

S(wr(2) · wr(8), rd) = 8 (read returns last value written)

S(rd · wr(2) · wr(8), wr(3)) = ok (write always returns ok)

Annette Bieniusa Programming Distributed Systems Summer Term 2019 13/ 49

Histories

A history records all the interactions between clients and the system:

Operations performed
Indication whether operation successfully completed and
corresponding return value
Relative order of concurrent operations
Session of an operation (corresponds to client / connection)

Annette Bieniusa Programming Distributed Systems Summer Term 2019 14/ 49

Classically, histories are represented as sequences of calls and returns[2].

⇒ Generalization: event graphs

Annette Bieniusa Programming Distributed Systems Summer Term 2019 15/ 49

Annette Bieniusa Programming Distributed Systems Summer Term 2019 16/ 49

Annette Bieniusa Programming Distributed Systems Summer Term 2019 17/ 49

Annette Bieniusa Programming Distributed Systems Summer Term 2019 18/ 49

Annette Bieniusa Programming Distributed Systems Summer Term 2019 19/ 49

Annette Bieniusa Programming Distributed Systems Summer Term 2019 20/ 49

Annette Bieniusa Programming Distributed Systems Summer Term 2019 21/ 49

Annette Bieniusa Programming Distributed Systems Summer Term 2019 22/ 49

Annette Bieniusa Programming Distributed Systems Summer Term 2019 23/ 49

Event graphs

An event graph represents an execution of a system.

Vertices: events
Attributes: label for vertices with information on the
corresponding event (e.g. which operation, parameters, return
values)
Relations: orderings or groupings of events

Definition
An event graph G is a tuple (E, d1, . . . , dn) where E ⊆ Events is a
finite or countably infinite set of events, and each di is an attribute or
relation over E.

Annette Bieniusa Programming Distributed Systems Summer Term 2019 24/ 49

Histories as event graphs

A history is an event graph (E, op, rval, rb, ss) where

op : E → Op associate operation with an event
rval : E → V alues ∪ {∇} are return values (∇ denotes that
operation never returns)
rb is returns-before order
ss is same-session relation

Annette Bieniusa Programming Distributed Systems Summer Term 2019 25/ 49

Hands-on: Timeline diagram vs. event graph

Annette Bieniusa Programming Distributed Systems Summer Term 2019 26/ 49

Annette Bieniusa Programming Distributed Systems Summer Term 2019 27/ 49

When is a history correct / valid?

Common approach: Require linearizability
Insert linearization points between begin and end of operation
Semantics of operations must hold with respect to these
linearization points
Linearization points serves as justification / witness for a history

Here: Consistency semantics beyond linearizability!

Annette Bieniusa Programming Distributed Systems Summer Term 2019 28/ 49

Specifying the Consistency Semantics I
An execution is an account of what happened when executing the
implementation
A history defines the observable client interaction
A specification is a “test” on histories

But how do we specify such a “test” / predicate?

Operational consistency model
Provides an abstract reference implementation whose behaviors
provide the specifications
Well-studied methodology for proving correctness (e.g. simulation
relations or refinement)
Problem: Typically close to specific concrete implementation
technique

Annette Bieniusa Programming Distributed Systems Summer Term 2019 29/ 49

Specifying the Consistency Semantics II

An abstract execution is an account of the “essence” of what
happened

Applicable to many implementations
Correctness criterion: History is valid if consistent with an abstract
execution satisfying some consistency guarantees

A concrete execution is the account of what happened when
executing an actual implementation

Axiomatic consistency model
Uses logical conditions on histories to define valid behaviors
Allows to combine different aspects (here: consistency guarantees)

Annette Bieniusa Programming Distributed Systems Summer Term 2019 30/ 49

Decomposing abstract executions

Essence of what happened can be tracked down to two basic
responsibilities of the underlying protocol:

1 Update Propagation: All operations must eventually become
visible everywhere

2 Conflict Resolution: Conflicting operations must be arbitrated
consistently

Annette Bieniusa Programming Distributed Systems Summer Term 2019 31/ 49

Visibility

Relation that determines the subset of operations “visible” to (and
potentially influencing) an operation
Describes relative timing of update propagation and operations

a
vis−−→ b

Effect of operation a is visible to the client performing b
Updates are concurrent if they are not ordered by visibility (i.e. if
they cannot observe each other’s effect)

Annette Bieniusa Programming Distributed Systems Summer Term 2019 32/ 49

Arbitration

Used for resolution of update conflicts (i.e. concurrent updates
that do not commute)

a
ar−→ b

Total order on operations
Often solved in practice by using timestamps

Annette Bieniusa Programming Distributed Systems Summer Term 2019 33/ 49

Definition: Abstract Executions

An abstract execution is an event graph (E, op, rval, rb, ss, vis, ar)
such that

(E, op, rval, rb, ss) is a history
vis is acyclic
ar is a total order

Annette Bieniusa Programming Distributed Systems Summer Term 2019 34/ 49

Definition: Abstract Executions

An abstract execution is an event graph (E, op, rval, rb, ss, vis, ar)
such that

(E, op, rval, rb, ss) is a history
vis is acyclic
ar is a total order

Annette Bieniusa Programming Distributed Systems Summer Term 2019 34/ 49

Return Values in Abstract Executions

An abstract execution (E, op, rval, rb, ss, vis, ar) satisfies a sequential
semantics S if

rval(e) = S(op(e), vis−1.sort(ar))

Observed state = visible operations sorted by arbitration

Annette Bieniusa Programming Distributed Systems Summer Term 2019 35/ 49

Consistency guarantee

A consistency guarantee is a predicate or property of an abstract
execution.

Consistency model is collection of all the guarantees needed;
histories must be justifiable by an abstraction execution that
satisfies them all.
Ordering guarantees ensure that the order of operations is
preserved (under certain conditions).
Transactions ensure that operation sequences do not become
visible individually.
Synchronization operations can enforce ordering selectively.

Annette Bieniusa Programming Distributed Systems Summer Term 2019 36/ 49

Important consistency models: Overview

Linearizability = SingleOrder ∧ Realtime ∧ RVal

SequentialConsistency = SingleOrder ∧ ReadMyWrites ∧ RVal

CausalConsistency = EventualVisibility ∧ Causality ∧ RVal

BasicEventualConsistency = EventualVisibility ∧
NoCircularCausality ∧ RVal

RVal refers to ReadValueConsistency

Annette Bieniusa Programming Distributed Systems Summer Term 2019 37/ 49

Eventual Consistency (Quiescent Consistency)

In any execution where the updates stop at some point (i.e. where
there are only finitely many updates), then eventually (i.e. after some
unspecified amount of time) each session converges to the same state.

Often used in replicated data stores
In essence: Convergence
It says nothing about

when the replicas will converge
what the state is that they will converge to
what is allowed in the meantime
when there is no phase of quiescence

Very weak guarantee ⇒ Difficult to program against

Annette Bieniusa Programming Distributed Systems Summer Term 2019 38/ 49

Eventual visibility

An abstract execution satisfies EventualVisibility if all events become
eventually visible.

∀e ∈ E : |{e′ ∈ E|(e rb−→ e′) ∧ (e 6 vis−−→ e′)}| <∞

Annette Bieniusa Programming Distributed Systems Summer Term 2019 39/ 49

Session guarantees

When issuing multiple operations in sequence within a session, we
usually expect additional properties (session consistency)
Session Order: so = rb ∩ ss

Annette Bieniusa Programming Distributed Systems Summer Term 2019 40/ 49

Read My Writes

It would be confusing if Alice would not see her own message.
Fix: Require that session order implies visibility

so ⊆ vis

Annette Bieniusa Programming Distributed Systems Summer Term 2019 41/ 49

Monotonic Reads

It would be confusing if Bob read Alice’ message, but when he
later read again, he would not see the message anymore
Fix: Require that visibility is monotonic with respect to session
order

vis ◦ so ⊆ vis

Annette Bieniusa Programming Distributed Systems Summer Term 2019 42/ 49

Consistent Prefix

Alice and Bob post concurrent different values, and the write of Bob is
arbitrated after the update of Alice.
Charlie reads and sees Bob’s message; then later, in the same session, he
only sees the “earlier” message of Alice.
Fix: Require that remote operations become visible after all operations
that precede them in arbitration order

ar ◦ (vis ∩ ¬ss) ⊆ vis

Annette Bieniusa Programming Distributed Systems Summer Term 2019 43/ 49

Causality Guarantees

Axiomatic definition of happens-before relation:

hb = ((rb ∩ ss) ∪ vis)+

Captures session order and transitive closure of session order and
visibility

NoCircularCausality: acyclic(hb)
CausalVisibility: hb ⊆ vis
CausalArbitration: hb ⊆ ar
Causality: CausalVisibility ∧ CausalArbitration

Annette Bieniusa Programming Distributed Systems Summer Term 2019 44/ 49

Causal Consistency

Strongest model that can implemented in such a way as to be
available even under (network) partitions
Causal consistency implies all session guarantees with the
exception of Consistent Prefix.

CausalConsistency = EventualVisibility ∧ Causality ∧ RVal

Annette Bieniusa Programming Distributed Systems Summer Term 2019 45/ 49

Strong Models
Ensure a single global order of operations that determines both
visibility and arbitration
SingleOrder:

∃E′ ⊆ rval−1(∇) : vis = ar \ (E′ × E)

What this means: Arbitration and visibility are the same except for
subset E′ that represents incomplete operations that are not
visible to any other operation.
Assuming, arbitration order corresponds to (perfect global)
timestamps, the SingleOrder implies that:

1 An operation can only see operations with earlier timestamps.
2 An operation must see all complete operations with earlier

timestamps.

Annette Bieniusa Programming Distributed Systems Summer Term 2019 46/ 49

Linearizability vs. Sequential Consistency

Linearizability requires RealTime:

rb ⊆ ar

Sequential consistency requires ReadMyWrites (restricted to
sessions)

To observe the difference between the two, clients must be able to
communicate over some “side channel” that allows them to
observe real time ordering.

Annette Bieniusa Programming Distributed Systems Summer Term 2019 47/ 49

Conclusion

In this lecture: Consistency for single operations
In later lecture: Consistency for groups of operations
(transactions)

Open problem: Can we safely mix and match different types of
consistency?

Annette Bieniusa Programming Distributed Systems Summer Term 2019 48/ 49

Further reading I
[1] Sebastian Burckhardt. “Principles of Eventual Consistency”. In:

Foundations and Trends in Programming Languages 1.1-2 (2014),
S. 1–150. doi: 10.1561/2500000011. url:
https://doi.org/10.1561/2500000011.

[2] Maurice Herlihy und Jeannette M. Wing. “Linearizability: A
Correctness Condition for Concurrent Objects”. In: ACM Trans.
Program. Lang. Syst. 12.3 (1990), S. 463–492. doi:
10.1145/78969.78972. url:
http://doi.acm.org/10.1145/78969.78972.

[3] Paolo Viotti und Marko Vukolic. “Consistency in
Non-Transactional Distributed Storage Systems”. In: CoRR
abs/1512.00168 (2015). arXiv: 1512.00168. url:
http://arxiv.org/abs/1512.00168.

Annette Bieniusa Programming Distributed Systems Summer Term 2019 49/ 49

https://doi.org/10.1561/2500000011
https://doi.org/10.1561/2500000011
https://doi.org/10.1145/78969.78972
http://doi.acm.org/10.1145/78969.78972
https://arxiv.org/abs/1512.00168
http://arxiv.org/abs/1512.00168

	Consistency specifications

