
Programming Distributed Systems
06 Replicated Data Types

Annette Bieniusa

AG Softech
FB Informatik

TU Kaiserslautern

Summer Term 2019

Annette Bieniusa Programming Distributed Systems Summer Term 2019 1/ 36

Motivation

So far, we resolved conflicting updates (i.e. non-commutative) updates
simply by sequencing operations using arbitration order (ar).

But sometimes, applications

do not want to depend on a global order such as ar
want to be made aware of conflicts
want to resolve conflicts in a specific way

Annette Bieniusa Programming Distributed Systems Summer Term 2019 2/ 36

Example: Multi-value register

Annette Bieniusa Programming Distributed Systems Summer Term 2019 3/ 36

How can we determine the state?

Annette Bieniusa Programming Distributed Systems Summer Term 2019 4/ 36

Formal model

Annette Bieniusa Programming Distributed Systems Summer Term 2019 5/ 36

Sequential semantics for registers

S : Op×Op∗ → V al

S(rd(), wr(2) · wr(8)) = 8 (read returns last value written)

S(rd(), ε) = undef

S(wr(3), rd() · wr(2) · wr(8)) = ok (write always returns ok)

Annette Bieniusa Programming Distributed Systems Summer Term 2019 6/ 36

Operation Context

An operation context is a finite event graph C = (E, op, vis, ar).

Events in E capture what prior operations are visible to the
operation that is to be performed.
Models the situation at a single replica

Annette Bieniusa Programming Distributed Systems Summer Term 2019 7/ 36

Concurrent semantics for Multi-Value Register

F : Op× C → V al

Fmvr(wr(x), C) = ok

Fmvr(rd(), C) = {x| exists e in C such that op(e) = wr(x)
and e is vis-maximal in C}

Annette Bieniusa Programming Distributed Systems Summer Term 2019 8/ 36

Quizz: What do the read ops return?

Annette Bieniusa Programming Distributed Systems Summer Term 2019 9/ 36

Annette Bieniusa Programming Distributed Systems Summer Term 2019 10/ 36

Return values in Abstract Executions revisited
Previous lecture:

An abstract execution (E, op, rval, rb, ss, vis, ar) satisfies a sequential
semantics S if

rval(e) = S(op(e), vis−1.sort(ar))

Read-value consistency can also be defined wrt concurrency
semantics

An abstract execution A = (E, op, rval, rb, ss, vis, ar) satisfies a
concurrent semantics F if

rval(e) = F (op(e), A |vis−1(e),op,vis,ar

Annette Bieniusa Programming Distributed Systems Summer Term 2019 11/ 36

Conflict-free Replicated Data Types (CRDTs) [3]

Same API as sequential abstract data type, but with concurrency
semantics
Catalogue of CRDTs

Register (Laster-writer wins, Multi-value)
Set (Grow-Only, Add-Wins, Remove-Wins)
Flags
Counter (unlimited, restricted/bounded)
Graph (directed, monotone DAG)
Sequence / List
Map, JSON

If operations are commutative, same semantics as in sequential
execution
Otherwise, need arbitration to resolve conflict

Annette Bieniusa Programming Distributed Systems Summer Term 2019 12/ 36

Specification: Replicated counter

Operation inc commutes ⇒ No conflict resolution policy is needed
Value returned depends only on E and op, but not on vis and ar

Fctr(rd(), (E, op, vis, ar)) = |{e′ ∈ E | op(e′) = inc}|

Annette Bieniusa Programming Distributed Systems Summer Term 2019 13/ 36

Semantics of a replicated Set or How to design a CRDT
Sequential specification of abstract data type Set S:

{true} add(e) {e ∈ S}

{true} rmv(e) {e /∈ S}

The following pairs of operations are commutative (for two
elements e, f and e 6= f):

{true} add(e); add(e) {e ∈ S}
{true} add(e); add(f) {e, f ∈ S}
{true} rmv(e); rmv(e) {e /∈ S}
{true} rmv(e); rmv(f) {e, f /∈ S}
{true} add(e); rmv(f) {e ∈ S, f /∈ S}

⇒ For these ops, the concurrent execution should yield the same result
as executing the ops in any order.

Annette Bieniusa Programming Distributed Systems Summer Term 2019 14/ 36

What are the options regarding a concurrency semantics
for add(e) and rmv(e)?

The operations add(e) and rmv(e) are not commutative
{true} add(e); rmv(e) {e /∈ S}
{true} rmv(e); add(e) {e ∈ S}

Options for conflict-resolution strategy when concurrently
executing add(e) and rmv(e)

add-wins: e ∈ S
remove-wins: e /∈ S
erroneous state (i.e. escalate the conflict to the user)
last-writer wins (i.e. define arbitration order through total order,
e.g., by adding totally- ordered timestamps)

Annette Bieniusa Programming Distributed Systems Summer Term 2019 15/ 36

Set Semantics

Annette Bieniusa Programming Distributed Systems Summer Term 2019 16/ 36

Formal Semantics for the Add-Wins Set

Faws(add(x), C) = ok

Faws(rmv(x), C) = ok

Faws(rd(), C) = {x| exists e in C such that op(e) = add(x)
and there exists no e’ in C such that
op(e′) = rmv(x) and e vis−−→ e′}

Annette Bieniusa Programming Distributed Systems Summer Term 2019 17/ 36

Sets with “interesting” semantics

Grow-only set
Convergence by union on element set
No remove operation

2P-Set (Wuu & Bernstein PODC 1984)
Set of added elements + set of tombstones (= removed elements)
Add/remove each element once
Problem: Violates sequential spec

c-set (Sovran et al., SOSP 2011)
Count for each element how often it was added and removed
Problem: Violates sequential spec

Annette Bieniusa Programming Distributed Systems Summer Term 2019 18/ 36

Take a break!

A Mathematician, a Biologist and a Physicist are sitting in a street cafe
watching people going in and coming out of the house on the other
side of the street. First they see two people going into the house. Time
passes. After a while they notice three persons coming out of the house.

The Physicist: “The measurement wasn’t accurate.”.

The Biologist: “They have reproduced”.

The Mathematician: “If now exactly one person enters the house then
it will be empty again.”

Annette Bieniusa Programming Distributed Systems Summer Term 2019 19/ 36

CRDTs: Strong Eventual Consistency

Eventual delivery: Every update is eventually applied at all correct
replicas
Termination: Update operation terminates
Strong convergence: Correct replicas that have applied the same
update have equivalent state

Annette Bieniusa Programming Distributed Systems Summer Term 2019 20/ 36

How to implement CRDTs

Annette Bieniusa Programming Distributed Systems Summer Term 2019 21/ 36

State-based CRDTs: Counter

Synchronization by propagating replica state
Updates must inflate the state
State must form a join semi-lattice wrt merge

⇒ Merge must be idempotent, commutative, associative

Annette Bieniusa Programming Distributed Systems Summer Term 2019 22/ 36

Join-semilattice

A join-semilattice S is a set that has a join (i.e. a least upper
bound) for any non-empty finite subset:

For all elements x, y ∈ S, the least upper bound (LUB) x t y exists.

A semilattice is commutative, idempotent and associative.
A partial order on the elements of S is induced by setting x ≤ y
iff x t y = y.

Annette Bieniusa Programming Distributed Systems Summer Term 2019 23/ 36

Examples

Annette Bieniusa Programming Distributed Systems Summer Term 2019 24/ 36

Example: Counter

Annette Bieniusa Programming Distributed Systems Summer Term 2019 25/ 36

Operation-based CRDTs

Concurrent updates must commute
Requires reliable causal delivery for CRDTs with non-commutative
operations

Annette Bieniusa Programming Distributed Systems Summer Term 2019 26/ 36

Example: Counter

Annette Bieniusa Programming Distributed Systems Summer Term 2019 27/ 36

Example: Add-wins Set (Observed-remove Set)

Annette Bieniusa Programming Distributed Systems Summer Term 2019 28/ 36

Example: Add-wins Set (Observed-remove Set)

Annette Bieniusa Programming Distributed Systems Summer Term 2019 29/ 36

Optimized version of Add-wins Set

Possible to garbage-collect the tombstone after remove
Trick: Assuming causal delivery, a removed element will never be
re-introduced (with the same id)[2]

Annette Bieniusa Programming Distributed Systems Summer Term 2019 30/ 36

Optimized version of Add-wins Set

Annette Bieniusa Programming Distributed Systems Summer Term 2019 31/ 36

Challenges with CRDTs
Meta-data overhead for CRDTs that require causal contexts

Version vectors track concurrent modifications
Problematic under churn (i.e. when nodes come and go)

Monotonically growing state with state-based approach
Infeasible for inherently growing data types such as sets, maps, lists
with prevalent add
When removing elements, often tombstones are required for
conflict resolution that relies on concurrency information
Requires garbage collection of tombstones when updates become
causally stable

Composability
CRDTs can be recursively nested (e.g. Maps, Sequences) or
atomically updated in transactions
Which type of composability is preferable? What is the semantics
of the composed entity?

Annette Bieniusa Programming Distributed Systems Summer Term 2019 32/ 36

Delta-based CRDTs
State-based CRDTs suffer from monotonically growing state
(lattice!)
Op-based CRDTs require reliable causal delivery

Delta-based CRDTs[1]
Small message comprising a set of incremental updates
Works over unreliable communication channels (because
idem-potent and commutative)

A delta-mutator mδ is a function, corresponding to an update
operation, which takes a state X in a join-semilattice S as parameter
and returns a delta-mutation mδ(X), also in S.

X ′ = X tmδ(X)

Annette Bieniusa Programming Distributed Systems Summer Term 2019 33/ 36

Adoption of CRDTs in industry

Annette Bieniusa Programming Distributed Systems Summer Term 2019 34/ 36

Conclusion

CRDTs provide Strong Eventual Consistency (sometimes even
more)
Properties of good conflict resolution

Don’t loose updates/information!
Deterministic (independent of local update order)
Semantics close to sequential version

Meta-data overhead can be substantial

Annette Bieniusa Programming Distributed Systems Summer Term 2019 35/ 36

Further reading I
[1] Paulo Sérgio Almeida, Ali Shoker und Carlos Baquero. “Delta

state replicated data types”. In: J. Parallel Distrib. Comput. 111
(2018), S. 162–173. doi: 10.1016/j.jpdc.2017.08.003. url:
https://doi.org/10.1016/j.jpdc.2017.08.003.

[2] Annette Bieniusa u. a. “An optimized conflict-free replicated set”.
In: CoRR abs/1210.3368 (2012). arXiv: 1210.3368. url:
http://arxiv.org/abs/1210.3368.

[3] Nuno Preguiça, Carlos Baquero und Marc Shapiro. “Conflict-Free
Replicated Data Types (CRDTs)”. In: Encyclopedia of Big Data
Technologies. Hrsg. von Sherif Sakr und Albert Zomaya. Cham:
Springer International Publishing, 2018, S. 1–10. isbn:
978-3-319-63962-8. doi: 10.1007/978-3-319-63962-8 185-1. url:
https://doi.org/10.1007/978-3-319-63962-8 185-1.

Annette Bieniusa Programming Distributed Systems Summer Term 2019 36/ 36

https://doi.org/10.1016/j.jpdc.2017.08.003
https://doi.org/10.1016/j.jpdc.2017.08.003
https://arxiv.org/abs/1210.3368
http://arxiv.org/abs/1210.3368
https://doi.org/10.1007/978-3-319-63962-8_185-1
https://doi.org/10.1007/978-3-319-63962-8_185-1

	How to implement CRDTs

