
Programming Distributed Systems
11 Consistent transactions

Annette Bieniusa

AG Softech
FB Informatik

TU Kaiserslautern

Summer Term 2019

Annette Bieniusa Programming Distributed Systems Summer Term 2019 1/ 15



Motivation

Under concurrent data access, race conditions between clients yield
undesirable situations:

Clients may try to modify data at the same time with the danger
of overwriting each others changes
Invariants on the data can be observed to be violated between
updates due to interleaving of operations by clients

⇒ Application programmers benefit from stronger guarantees, in
particular when modifying multiple objects

Annette Bieniusa Programming Distributed Systems Summer Term 2019 2/ 15



What is a transaction?

Annette Bieniusa Programming Distributed Systems Summer Term 2019 3/ 15



What is a transaction?
A transaction groups several reads and writes on different objects
together.

Database literature: ACID
Atomicity: Cannot be broken into smaller parts; i.e. appears to
execute as one operation

Either transaction succeeds to execute (commit)
Or transaction fails (abort, rollback)

Consistency: Keeps data invariants
Problematic and highly overloaded notion
Actually not really guaranteed by the database, but by the app!

Isolation: Concurrency semantics
Classically: Serializability (more on that later)

Durability: Persistence of commits

Annette Bieniusa Programming Distributed Systems Summer Term 2019 4/ 15



Why do we need transactions?

We want to simplify the following type of problems:

To maintain foreign key references in a relational data model
E.g. it should not be possible to remove an entry while another
update sets a reference to it

To build safe secondary indexes
Index needs to be updated when values change
Clients should not observe deviations between data and index

Annette Bieniusa Programming Distributed Systems Summer Term 2019 5/ 15



Source: Martin Kleppmann, Designing Data-Intensive Applications, OReilly, 2017[1]

Annette Bieniusa Programming Distributed Systems Summer Term 2019 6/ 15



Read committed
Guarantees:

When reading from the data store, only data that has been
committed is visible (no dirty reads).
When writing to the data store, only data that has been
committed will be overwritten (no dirty writes).

Why are these guarantees useful?

Dirty reads might violate the atomicity property
Only some of the updates from another transaction might be visible
When a transaction aborts, its writes will be rolled back → What
about the transactions that observed its tentative writes?

Dirty writes are concurrency problems
When transactions update multiple values, their updates might
overwrite each other in different order on different objects.

Annette Bieniusa Programming Distributed Systems Summer Term 2019 7/ 15



Read committed
Guarantees:

When reading from the data store, only data that has been
committed is visible (no dirty reads).
When writing to the data store, only data that has been
committed will be overwritten (no dirty writes).

Why are these guarantees useful?

Dirty reads might violate the atomicity property
Only some of the updates from another transaction might be visible
When a transaction aborts, its writes will be rolled back → What
about the transactions that observed its tentative writes?

Dirty writes are concurrency problems
When transactions update multiple values, their updates might
overwrite each other in different order on different objects.

Annette Bieniusa Programming Distributed Systems Summer Term 2019 7/ 15



Read skew

Alice owns 100 EUR; 50 EUR are on account A, another 50 EUR on
account B.

Now, Alice transfers 20 EUR from account A to account B. When
checking the account states, account A shows 30 EUR, account B
shows 50 EUR.

What happened to her money!?

Annette Bieniusa Programming Distributed Systems Summer Term 2019 8/ 15



Lost Updates

Typical pattern: Read a value, modify it, update it
(read-modify-write sequence)
Problem when concurrently updating is that the second write does
not observe (read) the changes from the first.
Consequence: One update overwrites the changes from the
concurrent one

How can we prevent this?

Conflict-resolution strategies like with CRDTs
Guarantee atomicity of operations in read-modify-write sequence
(e.g. using a lock, operating them in the same process, or using
primitives such as compare-and-set; problem: replication)
Abort if updated value is changed concurrently

Annette Bieniusa Programming Distributed Systems Summer Term 2019 9/ 15



Lost Updates

Typical pattern: Read a value, modify it, update it
(read-modify-write sequence)
Problem when concurrently updating is that the second write does
not observe (read) the changes from the first.
Consequence: One update overwrites the changes from the
concurrent one

How can we prevent this?

Conflict-resolution strategies like with CRDTs
Guarantee atomicity of operations in read-modify-write sequence
(e.g. using a lock, operating them in the same process, or using
primitives such as compare-and-set; problem: replication)
Abort if updated value is changed concurrently

Annette Bieniusa Programming Distributed Systems Summer Term 2019 9/ 15



Snapshot isolation
Guarantees:

Transactions read from a consistent snapshot of the data store
Prevents read skews and lost updates

Important for long-running read-only operations such as backups,
when doing integrity checks on data, or when executing queries
Supported by a number of popular databases (such as
PostgreSQL, MySQL, Oracle, etc.)
Usually implemented using multi-version concurrency control

Idea: Readers don’t block writers, and writers don’t block readers
Every write generates a new version
Every read obtains the version that corresponds to the respective
snapshot

Annette Bieniusa Programming Distributed Systems Summer Term 2019 10/ 15



Write Skew

Alica and Bob work in the examination office. To guarantee that
student requests can be answered on any day, Alice and Bob cannot go
on vacation on the same day.

Alice plans to take a holiday on July 1. She checks Bob’s calendar - no
entry!

Similarly, Bob plans to take a holiday on the same day. He checks
Alice’s calendar - no entry!

She adds to her calendar that she will be away on that day. And he
adds to his calendar that he will be away on that day.

Annette Bieniusa Programming Distributed Systems Summer Term 2019 11/ 15



Serializability

Guarantees that the result of executing transactions (potentially in
parallel) is equivalent to an execution without concurrency
Prevents write skew (and all the other anomalies mentioned so far)

Implementation ideas
Execute in serial order (feasible only on single node)
Two-phase locking (2PL): pessimistic
Serializable snapshot isolation (SSI): optimistic
Consensus for distributed setting

What is the difference between serializability and linearizability?

Annette Bieniusa Programming Distributed Systems Summer Term 2019 12/ 15



Serializability

Guarantees that the result of executing transactions (potentially in
parallel) is equivalent to an execution without concurrency
Prevents write skew (and all the other anomalies mentioned so far)

Implementation ideas
Execute in serial order (feasible only on single node)
Two-phase locking (2PL): pessimistic
Serializable snapshot isolation (SSI): optimistic
Consensus for distributed setting

What is the difference between serializability and linearizability?

Annette Bieniusa Programming Distributed Systems Summer Term 2019 12/ 15



Conclusion

Transactions provide means to operate safely on multiple objects
Though many programmers are not aware of it, databases provide
different isolation levels (→ Check the default configuration!)

Subtle differences
No standardized naming

Trade-off between performance and provided guarantees
No tool support that tells you which one is the best for your
application[2]

Annette Bieniusa Programming Distributed Systems Summer Term 2019 13/ 15



Further reading

Annette Bieniusa Programming Distributed Systems Summer Term 2019 14/ 15



Further reading I

[1] Martin Kleppmann. Designing Data-Intensive Applications: The
Big Ideas Behind Reliable, Scalable, and Maintainable Systems.
O’Reilly, 2016. isbn: 978-1-4493-7332-0. url:
http://shop.oreilly.com/product/0636920032175.do.

[2] Marc Shapiro und Pierre Sutra. “Database Consistency Models”.
In: CoRR abs/1804.00914 (2018). arXiv: 1804.00914. url:
http://arxiv.org/abs/1804.00914.

Annette Bieniusa Programming Distributed Systems Summer Term 2019 15/ 15

http://shop.oreilly.com/product/0636920032175.do
https://arxiv.org/abs/1804.00914
http://arxiv.org/abs/1804.00914

