
Programming Distributed Systems
More on testing (Lineage-based Testing)

Annette Bieniusa

AG Softech
FB Informatik

TU Kaiserslautern

Summer Term 2019

Annette Bieniusa Programming Distributed Systems Summer Term 2019 1/ 20



Why is it so difficult to test distributed systems?

Annette Bieniusa Programming Distributed Systems Summer Term 2019 2/ 20



Challenges
Multiple sources of non-determinism

Scheduling
Network latencies

Testing fault-tolerance requires to introduce faults
Typically not captured by testing frameworks

Complexity of systems is high
No centralized view
Multiple interacting components
Correctness of components is often not compositional

Formulating correctness condition is non-trivial
Consistency criteria
Timing and interaction

Some situations to test occur after a significant amount of time
and interaction

E.g. Timeouts, back pressure

Annette Bieniusa Programming Distributed Systems Summer Term 2019 3/ 20



Molly: Lineage-driven fault injection[1]

Reasons backwards from correct system outcomes & determines if
a failure could have prevented this outcome
Only injects the failures that might affect an outcome
Yields counter examples + lineage visualization
Works on a model of the system defined in Dedalus (subset of
Datalog language with explicit representation of time)

Annette Bieniusa Programming Distributed Systems Summer Term 2019 4/ 20



Molly - main idea

User provides program, precondition, postcondition and bounds
(number of time steps to execute, maximum number of node crashes,
maximum time until which failures can happen)

1 Execute program without faults
2 Find all possible explanations for the given result by reasoning

backwards (“lineage”)
3 Find faults that would invalidate all possible explanation (using

SAT solver)
4 Run program again with injected faults
5 If new run satisfies precondition, but not postcondition: report

failure
6 Otherwise: Repeat until all paths explored

Annette Bieniusa Programming Distributed Systems Summer Term 2019 5/ 20



Example: Getting Reliable Broadcast Right

Version 1 (wrong):

log(Node, Pload) :- bcast(Node, Pload);
log(Node, Pload)@next :- log(Node, Pload);
node(Node, Neighbor)@next :- node(Node, Neighbor);
log(Node2, Pload)@async :- bcast(Node1, Pload),

node(Node1, Node2);

Encoding in Dedalus as relations
Computation is expressed via rules that describe how relations
change over time
First attribute: Location
@next, @async: evolvement over time

Annette Bieniusa Programming Distributed Systems Summer Term 2019 6/ 20



Correctness condition for Reliable Broadcast:

“If a correct node delivers a message, then all correct nodes receive it!”

missing_log(A, Pl) :- log(X, Pl), node(X, A), notin log(A, Pl);
pre(X, Pl) :- log(X, Pl), notin crash(_, X, _);
post(X, Pl) :- log(X, Pl), notin missing_log(_, Pl);

Annette Bieniusa Programming Distributed Systems Summer Term 2019 7/ 20



Example: Lineage graphs

Lineage for log(B, Data) is message between A and B
Adversary drops message
Adversary wins here! i.e. Bug found!

Annette Bieniusa Programming Distributed Systems Summer Term 2019 8/ 20



Example: Getting Reliable Broadcast Right, Retry
Version 2 (wrong): Add redundancy when sending!

bcast(N, P)@next :- bcast(N, P);

Adversary crashes process and wins

Annette Bieniusa Programming Distributed Systems Summer Term 2019 9/ 20



Example: Getting Reliable Broadcast Right, Redundant
Version 3: Add redundancy on senders!

bcast(N, P)@next :- log(N, P);

Adversay cannot make a move
Programmer wins!

Annette Bieniusa Programming Distributed Systems Summer Term 2019 10/ 20



Sounds all very complex, right?

Annette Bieniusa Programming Distributed Systems Summer Term 2019 11/ 20



Simple Testing Can Prevent Most Critical Failures[2]

Study of 198 randomly sampled user-reported failures from five
distributed systems (Cassandra, HBase, HDFS, MapReduce,
Redis)
Almost all catastrophic failures (48 in total – 92%) are the re-
sult of incorrect handling of non-fatal errors explicitly signaled
in software.

Annette Bieniusa Programming Distributed Systems Summer Term 2019 12/ 20



Annette Bieniusa Programming Distributed Systems Summer Term 2019 13/ 20



Check list to prevent errors

Error handlers that ignore errors (e.g. just contain a log
statement)
Error handlers with “TODO”s or “FIXME”s
Error handlers that take drastic action

⇒ Simple code inspections would have helped!

Annette Bieniusa Programming Distributed Systems Summer Term 2019 14/ 20



Annette Bieniusa Programming Distributed Systems Summer Term 2019 15/ 20



Annette Bieniusa Programming Distributed Systems Summer Term 2019 16/ 20



Annette Bieniusa Programming Distributed Systems Summer Term 2019 17/ 20



No excuse for no test!

A majority of the production failures can be reproduced by a unit
test.
It is not necessary to have a large cluster to test for and reproduce
failures.

Almost all of the failures are guaranteed to manifest on no more
than 3 nodes
A vast majority will manifest on no more than 2 nodes.

Most failures require no more than three input events to get them
to manifest.
Most failures are deterministic given the right input event
sequences.

Annette Bieniusa Programming Distributed Systems Summer Term 2019 18/ 20



Want to learn more?

A very comprehensive overview on testing and verification of
distributed systems can be found here:
https://asatarin.github.io/testing-distributed-systems/

Annette Bieniusa Programming Distributed Systems Summer Term 2019 19/ 20

https://asatarin.github.io/testing-distributed-systems/


Further reading I
[1] Peter Alvaro, Joshua Rosen und Joseph M. Hellerstein.

“Lineage-driven Fault Injection”. In: Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data,
Melbourne, Victoria, Australia, May 31 - June 4, 2015. Hrsg. von
Timos K. Sellis, Susan B. Davidson und Zachary G. Ives. ACM,
2015, S. 331–346. isbn: 978-1-4503-2758-9. doi:
10.1145/2723372.2723711. url:
http://doi.acm.org/10.1145/2723372.2723711.

[2] Ding Yuan u. a. “Simple Testing Can Prevent Most Critical
Failures: An Analysis of Production Failures in Distributed
Data-intensive Systems”. In: Proceedings of the 11th USENIX
Conference on Operating Systems Design and Implementation.
OSDI’14. Broomfield, CO: USENIX Association, 2014,
S. 249–265. isbn: 978-1-931971-16-4. url:
http://dl.acm.org/citation.cfm?id=2685048.2685068.

Annette Bieniusa Programming Distributed Systems Summer Term 2019 20/ 20

https://doi.org/10.1145/2723372.2723711
http://doi.acm.org/10.1145/2723372.2723711
http://dl.acm.org/citation.cfm?id=2685048.2685068

	Why is it so difficult to test distributed systems?
	Sounds all very complex, right?

