
Programming Distributed Systems
13 Troubleshooting Erlang

Annette Bieniusa

AG Softech
FB Informatik

TU Kaiserslautern

Summer Term 2019

Annette Bieniusa Programming Distributed Systems Summer Term 2019 1/ 23

Tricks and Tools for Software Development in
Erlang

Annette Bieniusa Programming Distributed Systems Summer Term 2019 2/ 23

Erlang Software

Composition of OTP applications
Each application consists of top-level supervisor and dependent
(child) processes
Typical code organization

_build/
doc/
src/
test/
README.md
LICENSE
rebar.config
rebar.lock

Annette Bieniusa Programming Distributed Systems Summer Term 2019 3/ 23

Build tool: rebar3

Generates templates for code repos
Unifies different tools

help Display a list of tasks or help for a given task
or subtask.

clean Remove compiled beam files from apps.
compile Compile apps .app.src and .erl files.
dialyzer Run the Dialyzer analyzer on the project.
do Higher order provider for running multiple tasks

in a sequence.
edoc Generate documentation using edoc.
eunit Run EUnit Tests.
cover Perform coverage analysis.
shell Run shell with project apps and deps in path.

Annette Bieniusa Programming Distributed Systems Summer Term 2019 4/ 23

Extract from rebar.config for Minidote
{deps, [
% Replicated datatype library
{antidote_crdt, {git, "https://github.com/AntidoteDB/

antidote_crdt", {tag, "v0.1.2"}}},
% Protocol buffer decoding/encoding
{antidote_pb_codec, {git, "https://github.com/AntidoteDB/

antidote_pb_codec", {tag, "v0.0.5"}}},
% ranch socket acceptor pool for managing protocol buffer

sockets
{ranch, "1.5.0"},
% lager for logging:
{lager, "3.7.0"},
{meck, "0.8.13"}

]}.

{profiles, [
{test, [

{deps, [
% Antidote protocol buffer client for testing:
{antidote_pb, {git, "https://github.com/AntidoteDB/antidote-

erlang-client", {tag, "v0.2.4"}}},
% meck mocking framework
{meck, "0.8.13"}

]}
]}

]}.

Annette Bieniusa Programming Distributed Systems Summer Term 2019 5/ 23

Dependencies

Open-source packages
Package manager Hex
Git repositories via URL (and optionally release version or commit
hash for reproducability)

rebar3 pulls all dependencies recursively
File rebar.lock contains information on exact version that is used
Sometimes need to specify special build options, code
transformations as compile time, etc.

Annette Bieniusa Programming Distributed Systems Summer Term 2019 6/ 23

https://hex.pm

How to Prevent Things Going Wrong . . .

Annette Bieniusa Programming Distributed Systems Summer Term 2019 7/ 23

Type checking: Dialyzer
Dynamic checker based on success typing
Will not prove the absence of (type) errors, only best effort
Dialyzer will only report errors that will lead to a crash (when/if
that code is executed)

-module(dialyzer_example1).
-export([f/1]).

f(Y) ->
X = case Y of

1 -> ok;
2 -> 3.5

end,
convert(X).

convert(X) when is_atom(X) -> atom_to_list(X).

Annette Bieniusa Programming Distributed Systems Summer Term 2019 8/ 23

Type specifications

Singleton types (e.g. a given integer, empty list [], a given atom)
Built-in types (e.g. any(), pid(), atom(), binary(), integer(),
non_neg_integer(), pos_integer(), fun(),
fun(Type1, Type2, ..., TypeN) -> Type, [Type()],
{Type1, Type2, ..., TypeN})
Union types, e.g.

boolean() is defined as true | false

byte() is 0 | ... | 255

number() is integer() | float())

Annette Bieniusa Programming Distributed Systems Summer Term 2019 9/ 23

User-defined types

-type TypeName() :: TypeDefinition.

-type tree() :: 'leaf' | {'node', any(), tree(), tree()}.
-type tree() :: 'leaf' | {'node', Val::any(), Left::tree(), Right

::tree()}.

-record(student, {name = "" :: string(), matrikel ::
non_neg_integer()}).

-type student() :: #student{}.

Annette Bieniusa Programming Distributed Systems Summer Term 2019 10/ 23

General advice on Typing

Write type specifications and use dialyzer
For type checking and for documentation purposes
For examples, take a look at the Antidote CRDT library
Fix all the errors that Dialyzer finds
Don’t despair - ask for help!

Annette Bieniusa Programming Distributed Systems Summer Term 2019 11/ 23

https://github.com/AntidoteDB/antidote_crdt/blob/master/src/antidote_crdt_counter_pn.erl

Let it crash fail

Erlang in Anger, p. 1 by Fred Hebert

Most other programming languages:

“Something going wrong at run-time is something that needs to be
prevented, and if it cannot be prevented, then it’s out of scope for
whatever solution people have been thinking about.”

Erlang:

“[. . .] failures will happen no matter what.[. . .] It is rarely practical nor
even possible to get rid of all errors in a program or a system.”

Annette Bieniusa Programming Distributed Systems Summer Term 2019 12/ 23

http://www.erlang-in-anger.com

Let it crash fail

Erlang in Anger, p. 1 by Fred Hebert

Most other programming languages:

“Something going wrong at run-time is something that needs to be
prevented, and if it cannot be prevented, then it’s out of scope for
whatever solution people have been thinking about.”

Erlang:

“[. . .] failures will happen no matter what.[. . .] It is rarely practical nor
even possible to get rid of all errors in a program or a system.”

Annette Bieniusa Programming Distributed Systems Summer Term 2019 12/ 23

http://www.erlang-in-anger.com

Supervisors

Most faults and errors are transient (e.g. network problems, timing
for concurrent start)
Simple retrying is a surprisingly successful strategy
Starting of supervisor tree is synchronous to establish a correct,
stable initial state

Annette Bieniusa Programming Distributed Systems Summer Term 2019 13/ 23

When Things Go Wrong. . .

Annette Bieniusa Programming Distributed Systems Summer Term 2019 14/ 23

Connecting to nodes

Erlang allows to connect to running virtual machines for live
diagnosis
Local and remote (requires typically shared cookie)
Can also be used to re-load, re-compile and hot-swap code in
production
Steps

1 Start an Erlang shell via erl

2 Press ˆG to enter the Job Control Mode
3 Press h for a list of options
4 r for starting remote shell, c to connect to that shell
5 Quit remote shell with ˆG q

Annette Bieniusa Programming Distributed Systems Summer Term 2019 15/ 23

Example

silverbird:annettebieniusa$ erl
Erlang/OTP 22 [erts-10.4.2] [source] [64-bit] [smp:8:8] [ds

:8:8:10] [async-threads:1] [hipe] [dtrace]

Eshell V10.4.2 (abort with ˆG)
1>
User switch command
--> h
c [nn] - connect to job
i [nn] - interrupt job
k [nn] - kill job
j - list all jobs
s [shell] - start local shell
r [node [shell]] - start remote shell
q - quit erlang
? | h - this message
-->

Annette Bieniusa Programming Distributed Systems Summer Term 2019 16/ 23

Observing the Behavior at Runtime

Useful library: Recon
Information on a specific process: process_info/2 or recon:info/1

recon:get_state/1 yields internal state of OTP process for given
pid (process identifier)
For OTP Processes, check sys module for detailed statistics,
logging of all messages and state transitions, etc.

Annette Bieniusa Programming Distributed Systems Summer Term 2019 17/ 23

http://ferd.github.io/recon/

Understanding Crash Dumps

File erl_crash.dump generated after crashes
Check for Slogan at the beginning to get hint on reason
Contains a lot of information
Extract interesting information with analyzer script https://github
.com/ferd/recon/blob/master/script/erl crashdump analyzer.sh

Annette Bieniusa Programming Distributed Systems Summer Term 2019 18/ 23

https://github.com/ferd/recon/blob/master/script/erl_crashdump_analyzer.sh
https://github.com/ferd/recon/blob/master/script/erl_crashdump_analyzer.sh

Memory Leaks

Common sources:
Don’t use dynamic atoms (i.e. atom names generated at runtime)
because they are entered in a global table and cached forever!
Check for erlang:binary_to_term/1 and erlang:list_to_atom\1

ETS tables are never garbage collected, must be explicitely deleted
Process leaks by starting a dynamic number of processes that are
never killed and keep looping

Annette Bieniusa Programming Distributed Systems Summer Term 2019 19/ 23

Problem: Overloading
When nodes are running ouf of memory, look for the following things:

1 Log messages with io:format

Replace with calls to lager (or logger since Erlang 22)
2 Blocking operations (e.g. waiting on TCP sockets, messaging

patterns prone to deadlock)
Message queues might fill up during blocked waiting
Move the waiting out of the critical paths into an asynchronous call
But beware of “call-back hell”

3 Unexpected messages (e.g. typos in message type atom)
Check that generic handler is in place that matches any pattern

Example for OTP gen_server:

handle_call(_Request, _From, _State) ->
erlang:error(not_implemented).

Annette Bieniusa Programming Distributed Systems Summer Term 2019 20/ 23

What if there are more client requests than the server can
handle?

Example

Strategies for dealing with backpressure:

Add more resources and scale out
Drop requests (→ often not acceptable)
Store requests temporarily (for dealing with short bursts)
Control the producer / clients and restrict number of requests

Annette Bieniusa Programming Distributed Systems Summer Term 2019 21/ 23

https://youtu.be/8NPzLBSBzPI

What if there are more client requests than the server can
handle?

Example

Strategies for dealing with backpressure:

Add more resources and scale out
Drop requests (→ often not acceptable)
Store requests temporarily (for dealing with short bursts)
Control the producer / clients and restrict number of requests

Annette Bieniusa Programming Distributed Systems Summer Term 2019 21/ 23

https://youtu.be/8NPzLBSBzPI

Further reading

Erlang in Anger by Fred Hebert
Learn you some Erlang for Great Good! by Fred Hebert

Annette Bieniusa Programming Distributed Systems Summer Term 2019 22/ 23

http://www.erlang-in-anger.com
https://learnyousomeerlang.com

Annette Bieniusa Programming Distributed Systems Summer Term 2019 23/ 23

	Tricks and Tools for Software Development in Erlang
	How to Prevent Things Going Wrong …
	When Things Go Wrong…

