
Programming Distributed Systems
Programming Models for Distributed Systems

Annette Bieniusa

FB Informatik
TU Kaiserslautern

Annette Bieniusa Programming Distributed Systems 1/ 26



What is a Programming Model? [3]

A programming model is some form of abstract machine
Provides operations to the level above
Requires implementations for these operations on the level(s) below

Simplification through abstraction
Standard interface that remains stable even if underlying
architecture changes
Provide different levels of abstraction
Often starting point for language development

⇒ Separation of concern between software developers and framework
implementors (runtime system, compiler, etc.)

Annette Bieniusa Programming Distributed Systems 2/ 26



Properties of good programming models

Meaningful abstractions
System-architecture independent
Efficiently implementable
Easy to understand

Annette Bieniusa Programming Distributed Systems 3/ 26



What kind of abstractions should a programming
model for distributed systems provide?

Annette Bieniusa Programming Distributed Systems 4/ 26



Remote Procedure Call

Annette Bieniusa Programming Distributed Systems 5/ 26



Remote Procedure Call (RPC) [2]

Rather broad classifying term with changing meaning over time
From client-server design to interconnected services

Two entities (caller/callee) with different address spaces
communicate over some channel in a request-response mechanism
Examples: CORBA (Common Object Request Broker
Architecture), Java RMI (Remote Method Invocation), SOAP
(Simple Object Access Protocol), gRPC (Protocol Buffers),
Twitter Finagle . . .

Annette Bieniusa Programming Distributed Systems 6/ 26



Annette Bieniusa Programming Distributed Systems 7/ 26



Flaws of RPC

Location transparency (i.e. request to remote service looks like
local function call) masks the potential of distribution-related
failures
RPCs might timeout, requires usually special handling such as
retrying
Local functions do not need to deal with the problem of
idempotence
Execution time is unpredictable
Passing of objects is complex (e.g. might need to serialize
referenced objects)
Translating data types between languages might rely on
semantical approximation

Annette Bieniusa Programming Distributed Systems 8/ 26



Aspects of modern RPC
Language-agnostic
Serialization (aka marshalling or pickling)

JSON, XML, Protocol Buffers, . . .
Load-balancing

SOA (Service-oriented architecture) ⇒ Microservice architectures!
Asynchronous

⇒ RPC as term gets more and more diffuse

Annette Bieniusa Programming Distributed Systems 9/ 26



Futures and Promises

“Asynchronous RPC”
A future is a value that will eventually become available
Two states:

completed: value is available
incomplete: computation for value is not yet complete

Strategies: Eager vs. lazy evaluation
Typical application: Web development and user interfaces

Annette Bieniusa Programming Distributed Systems 10/ 26



Example
interface ArchiveSearcher { String search(String target); }

class App {
ExecutorService executor = ...
ArchiveSearcher searcher = ...
void showSearch(final String target)

throws InterruptedException {
Future<String> future
= executor.submit(new Callable<String>() {

public String call() {
return searcher.search(target);

}});
displayOtherThings(); // do other things while searching
try {
displayText(future.get()); // use future

} catch (ExecutionException ex) { cleanup(); return; }
}

}

From Oracle’s Java Documentation

Annette Bieniusa Programming Distributed Systems 11/ 26

%5Bhttps://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Future.html


Actors and Message Passing

Annette Bieniusa Programming Distributed Systems 12/ 26



Characteristics of Actor Model [Hewitt]

Actors are isolated units of computation + state that can send
messages asynchronously to each other
Messages are queued in mailbox and processed sequentially when
they match against some pattern/rule
No assumptions on message delivery guarantees
(Potential) State + behavior changes upon message processing[1]
Very close to Alan Kay’s definition of Object-Oriented
Programming

Annette Bieniusa Programming Distributed Systems 13/ 26



Actors in the Wild
Erlang

Process-based
Pure message passing
monitor and link for notification of process failure/shutdown
OTP (Open Telecom Platform) for generic reusable patterns

Akka
Actor model for the JVM
Purges non-matching messages
Enforces parental supervision
Included in Scala standard library

Orleans
Actors for Cloud computing
Scalability by replication
Fine-grain reconciliation of state with transactions

Annette Bieniusa Programming Distributed Systems 14/ 26



Message brokers

Message-oriented middleware which stores messages temporarily
and forwards them to registered recipients
Patterns: Publish-subscribe, point-to-point
Acts as buffer for unavailable and overloaded recipients
Decoupling of sender and receiver(s)
Efficient 1-to-n multicast
Advanced Message Queuing Protocol (AMQP) standardizes
queuing, routing, reliability and security
Delivery guarantees (at-most-once, at-least-once, exactly-once)

Annette Bieniusa Programming Distributed Systems 15/ 26



Example: RabbitMQ
Supports (amongst others) publish-subscribe pattern
Typical usage: Topics as routing keys

Q1 is interested in all the orange animals
Q2 wants to hear everything about rabbits, and everything about
lazy animals
Messages that don’t map any binding get lost
Messages are maintained in the queue in publication order

Annette Bieniusa Programming Distributed Systems 16/ 26



Stream processing

(Infinite) Sequence of data that is incrementally made available
Example: Sensor data, audio / video delivery, filesystem APIs, etc.
Producers vs. Consumers
Notions of window and time: Consumers will receive only
messages after subscribing
Here: Event stream where data item is atypically associated with
timestamp

Annette Bieniusa Programming Distributed Systems 17/ 26



Classification of stream processing systems

1 What happens if producer sends messages faster than the
consumer can handle?

Drop messages
Buffer messages
Apply backpressure (i.e. prevent producer from sending more)

2 What happens if nodes become unreachable?
Loose messages
Use replication and persistence to preserve non-acknowledged
messages

Annette Bieniusa Programming Distributed Systems 18/ 26



Log-based message brokers

Example: Kafka [https://kafka.apache.org]
Message buffers are typically transient: Once the message is
delivered, the message is deleted
Idea: Combine durable storage with low-latency notification!

Annette Bieniusa Programming Distributed Systems 19/ 26



Scalability and fault-tolerance for replicated logs
For scalability, partitioning of log on different machines
For fault-tolerance, replication on different machines

Need to ensure same ordering on all replicas (⇒ Total-order
broadcast)
Can easily add consumers for debugging, testing, etc.
Ideas: Event-sourcing, immutability and audits

Annette Bieniusa Programming Distributed Systems 20/ 26



Batch-processing

Static data sets that has known/finite size
Need to artificially batch data into by day, month, minute, . . .
Typically large latencies

Annette Bieniusa Programming Distributed Systems 21/ 26



The Future: Distributed Programming Languages

Annette Bieniusa Programming Distributed Systems 22/ 26



From Model to Language

Challenges: Partial failure, concurrency and consistency, latency,
. . .

1 Distributed Shared Memory
Runtime maps virtual addresses to physical ones
“Single-system” illusion

2 Actors
Explicit communication
Location of processes is transparent

3 Dataflow
Data transformations expressed as DAG
Processes are transparent
Example: MapReduce (Google), Dryad (Microsoft), Spark

Annette Bieniusa Programming Distributed Systems 23/ 26



Example: WordCount in MapReduce

Annette Bieniusa Programming Distributed Systems 24/ 26



Further reading

Material collection by Northeastern University, CS7680 Special
Topics in Computing Systems: Programming Models for
Distributed Computing

Annette Bieniusa Programming Distributed Systems 25/ 26

https://github.com/heathermiller/dist-prog-book


Further reading I

[1] Gul Agha. ”Concurrent Object-Oriented Programming“. In:
Commun. ACM 33.9 (1990), S. 125–141. doi:
10.1145/83880.84528. url:
http://doi.acm.org/10.1145/83880.84528.

[2] Andrew Birrell und Bruce Jay Nelson. ”Implementing Remote
Procedure Calls“. In: ACM Trans. Comput. Syst. 2.1 (1984),
S. 39–59. url: https://doi.org/10.1145/2080.357392.

[3] David B. Skillicorn und Domenico Talia. ”Models and Languages
for Parallel Computation“. In: ACM Comput. Surv. 30.2 (1998),
S. 123–169. doi: 10.1145/280277.280278. url:
http://doi.acm.org/10.1145/280277.280278.

Annette Bieniusa Programming Distributed Systems 26/ 26

https://doi.org/10.1145/83880.84528
http://doi.acm.org/10.1145/83880.84528
https://doi.org/10.1145/2080.357392
https://doi.org/10.1145/280277.280278
http://doi.acm.org/10.1145/280277.280278

	What kind of abstractions should a programming model for distributed systems provide?
	Remote Procedure Call
	Actors and Message Passing
	The Future: Distributed Programming Languages

