- N
I : TECHNISCHE UNIVERSITAT

= KAISERSLAUTERN

Programming Distributed Systems

Programming Models for Distributed Systems

Annette Bieniusa

FB Informatik
TU Kaiserslautern

Annette Bieniusa Programming Distributed Systems 1/ 26



- "
I : TECHNISCHE UNIVERSITAT

= KAISERSLAUTERN

What is a Programming Model? [3]

A programming model is some form of abstract machine
m Provides operations to the level above
m Requires implementations for these operations on the level(s) below

Simplification through abstraction

Standard interface that remains stable even if underlying
architecture changes

Provide different levels of abstraction

m Often starting point for language development

= Separation of concern between software developers and framework
implementors (runtime system, compiler, etc.)

Annette Bieniusa Programming Distributed Systems 2/ 26



- "
I : TECHNISCHE UNIVERSITAT

= KAISERSLAUTERN

Properties of good programming models

Meaningful abstractions
System-architecture independent
Efficiently implementable

Easy to understand

Annette Bieniusa Programming Distributed Systems 3/ 26



- )
I & TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

What kind of abstractions should a programming
model for distributed systems provide?

Annette Bieniusa Programming Distributed Systems 4/ 26



TECHNISCHE UNIVERSITAT
KAISERSLAUTERN

Remote Procedure Call

Annette Bieniusa Programming Distributed Systems 5/ 26



- "
I = TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Remote Procedure Call (RPC) [2]

m Rather broad classifying term with changing meaning over time
m From client-server design to interconnected services

m Two entities (caller/callee) with different address spaces
communicate over some channel in a request-response mechanism

m Examples: CORBA (Common Object Request Broker
Architecture), Java RMI (Remote Method Invocation), SOAP
(Simple Object Access Protocol), gRPC (Protocol Buffers),
Twitter Finagle ...

Annette Bieniusa Programming Distributed Systems 6/ 26



TECHNISCHE UNIVERSITAT
KAISERSLAUTERN

Client Server
‘Client Routines ‘ ‘ Server ‘
) Routines
Local prgcedure
call (1) (10) (6) (5)
‘ Client Stub ‘ ‘ Server Stub ‘
System call (2) 9) (7) (4)
(8)
Network Network
Network
Local kernel communication (3) Remote kernel

Annette Bieniusa

Programming Distributed Systems

7/ 26



- "
I : TECHNISCHE UNIVERSITAT

= KAISERSLAUTERN

Flaws of RPC

m Location transparency (i.e. request to remote service looks like
local function call) masks the potential of distribution-related
failures

m RPCs might timeout, requires usually special handling such as
retrying

m Local functions do not need to deal with the problem of
idempotence

m Execution time is unpredictable

m Passing of objects is complex (e.g. might need to serialize
referenced objects)

m Translating data types between languages might rely on
semantical approximation

Annette Bieniusa Programming Distributed Systems 8/ 26



- "
I : TECHNISCHE UNIVERSITAT

= KAISERSLAUTERN

Aspects of modern RPC

m Language-agnostic
m Serialization (aka marshalling or pickling)
m JSON, XML, Protocol Buffers, ...

m Load-balancing
m SOA (Service-oriented architecture) = Microservice architectures!

m Asynchronous

Wait for Interrupt client
. acceptance
Client  e— -
/ \
Call remote Felurn ’ Rt
rom cal eturn
procecre results Acknowledge
Accept
Request request
SeIVer s oo —
Call local procedure \ Time —»
Call client with
one-way RPC

= RPC as term gets more and more diffuse

Annette Bieniusa Programming Distributed Systems 9/ 26



- "
I : TECHNISCHE UNIVERSITAT

= KAISERSLAUTERN

Futures and Promises

“Asynchronous RPC"
A future is a value that will eventually become available
Two states:

m completed: value is available

m incomplete: computation for value is not yet complete

Strategies: Eager vs. lazy evaluation
Typical application: Web development and user interfaces

Annette Bieniusa Programming Distributed Systems 10/ 26



- "
= TECHNISCHE UNIVERSITAT
I = KAISERSLAUTERN

Example

interface ArchiveSearcher { String search(String target); }

class App {
ExecutorService executor =
ArchiveSearcher searcher = ..
void showSearch (final Strlng target)
throws InterruptedException {
Future<String> future
= executor.submit (new Callable<String>() {
public String call() {
return searcher.search (target);
P
displayOtherThings (); // do other things while searching
try {
displayText (future.get ()); // use future
} catch (ExecutionException ex) { cleanup(); return; }

From Oracle’s Java Documentation

Annette Bieniusa Programming Distributed Systems 11/ 26


%5Bhttps://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Future.html

TECHNISCHE UNIVERSITAT
KAISERSLAUTERN

Actors and Message Passing

Annette Bieniusa Programming Distributed Systems 12/ 26



- "
I : TECHNISCHE UNIVERSITAT

= KAISERSLAUTERN

Characteristics of Actor Model [Hewitt]

Actors are isolated units of computation + state that can send
messages asynchronously to each other

Messages are queued in mailbox and processed sequentially when
they match against some pattern/rule

No assumptions on message delivery guarantees

(Potential) State 4 behavior changes upon message processing[1]
Very close to Alan Kay's definition of Object-Oriented
Programming

Annette Bieniusa Programming Distributed Systems 13/ 26



- 2
I : TECHNISCHE UNIVERSITAT

= KAISERSLAUTERN

Actors in the Wild

m Erlang
m Process-based
m Pure message passing
® monitor and link for notification of process failure/shutdown
m OTP (Open Telecom Platform) for generic reusable patterns
m Akka
m Actor model for the JVM
m Purges non-matching messages
m Enforces parental supervision
m Included in Scala standard library
m Orleans
m Actors for Cloud computing
m Scalability by replication
m Fine-grain reconciliation of state with transactions

Annette Bieniusa Programming Distributed Systems

14/ 26



- "
I = TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Message brokers

m Message-oriented middleware which stores messages temporarily
and forwards them to registered recipients

Patterns: Publish-subscribe, point-to-point

Acts as buffer for unavailable and overloaded recipients
Decoupling of sender and receiver(s)

Efficient 1-to-n multicast

Advanced Message Queuing Protocol (AMQP) standardizes
queuing, routing, reliability and security

m Delivery guarantees (at-most-once, at-least-once, exactly-once)

Annette Bieniusa Programming Distributed Systems 15/ 26



- "
I : TECHNISCHE UNIVERSITAT

= KAISERSLAUTERN

Example: RabbitMQ
m Supports (amongst others) publish-subscribe pattern
m Typical usage: Topics as routing keys

Q1

type=topic *orange*

* % rabbit

m Q1 is interested in all the orange animals

m Q2 wants to hear everything about rabbits, and everything about
lazy animals

m Messages that don’'t map any binding get lost

m Messages are maintained in the queue in publication order

Annette Bieniusa Programming Distributed Systems 16/ 26



- "
I = TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Stream processing

(Infinite) Sequence of data that is incrementally made available
Example: Sensor data, audio / video delivery, filesystem APls, etc.
Producers vs. Consumers

Notions of window and time: Consumers will receive only
messages after subscribing

Here: Event stream where data item is atypically associated with
timestamp

Annette Bieniusa Programming Distributed Systems 17/ 26



- "
I : TECHNISCHE UNIVERSITAT

= KAISERSLAUTERN

Classification of stream processing systems

What happens if producer sends messages faster than the
consumer can handle?

m Drop messages

m Buffer messages

m Apply backpressure (i.e. prevent producer from sending more)
What happens if nodes become unreachable?

m Loose messages

m Use replication and persistence to preserve non-acknowledged

messages

Annette Bieniusa Programming Distributed Systems 18/ 26



- "
I : TECHNISCHE UNIVERSITAT

= KAISERSLAUTERN

Log-based message brokers

m Example: Kafka [https://kafka.apache.org]

m Message buffers are typically transient: Once the message is
delivered, the message is deleted

m |dea: Combine durable storage with low-latency notification!

Producers

writes

Consumer A Consumer B
(offset=9) (offset=11)

Annette Bieniusa Programming Distributed Systems

19/ 26



- "
I = TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Scalability and fault-tolerance for replicated logs

m For scalability, partitioning of log on different machines
m For fault-tolerance, replication on different machines

Anatomy of a Topic

Fartiion .
ARRR N
,,‘

Pargmc“ IIHH ! }
Partition 11 ‘_'\
2 2|54 7 0|12
M

ol

New

= Need to ensure same ordering on all replicas (= Total-order
broadcast)

m Can easily add consumers for debugging, testing, etc.

m /deas: Event-sourcing, immutability and audits

Annette Bieniusa Programming Distributed Systems 20/ 26



- 2
I : TECHNISCHE UNIVERSITAT

= KAISERSLAUTERN

Batch-processing

m Static data sets that has known/finite size
m Need to artificially batch data into by day, month, minute, ...
m Typically large latencies

Annette Bieniusa Programming Distributed Systems 21/ 26



- .
I : TECHNISCHE UNIVERSITAT

= KAISERSLAUTERN

The Future: Distributed Programming Languages

Annette Bieniusa Programming Distributed Systems 22/ 26



- "
I : TECHNISCHE UNIVERSITAT

= KAISERSLAUTERN

From Model to Language

m Challenges: Partial failure, concurrency and consistency, latency,

Distributed Shared Memory
m Runtime maps virtual addresses to physical ones
m “Single-system” illusion
Actors
m Explicit communication
m Location of processes is transparent
Dataflow
m Data transformations expressed as DAG
m Processes are transparent
m Example: MapReduce (Google), Dryad (Microsoft), Spark

Annette Bieniusa Programming Distributed Systems 23/ 26



TECHNISCHE UNIVERSITAT
I = KAISERSLAUTERN

Example: WordCount in MapReduce

Input Splitting Mapping
Deer, 1
Deer Bear River Bear, 1
River, 1
Deer Bear River [rsre—— Car, 1
Car Car River Car Car River Car, 1
Deer Car Bear River, 1
Deer, 1
Deer Car Bear Car, 1
Bear, 1

Annette Bieniusa

Programming Distributed Systems

Shuffling Reducing Final result
Bear, 1 Bear, 2
Bear, 1
A |

Car, 1 Car, 3 Bear, 2

Car, 1 ] Car, 3
Deer, 2
River, 2

Deer, 1 Deer, 2

Deer, 1

River, 1 River, 2

River, 1

24/ 26



- 2
I : TECHNISCHE UNIVERSITAT

= KAISERSLAUTERN

Further reading

m Material collection by Northeastern University, CS7680 Special
Topics in Computing Systems: Programming Models for
Distributed Computing

Annette Bieniusa Programming Distributed Systems 25/ 26


https://github.com/heathermiller/dist-prog-book

- )
I = TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Further reading |

[1]  Gul Agha. ,,Concurrent Object-Oriented Programming®. In:
Commun. ACM 33.9 (1990), S. 125-141. DOT:
10.1145/83880.84528. URL:
http://doi.acm.org/10.1145/83880.84528.

[2]  Andrew Birrell und Bruce Jay Nelson. ,Implementing Remote
Procedure Calls*. In: ACM Trans. Comput. Syst. 2.1 (1984),

S. 39-50. URL: https://doi.org/10.1145/2080.357392.

(3] David B. Skillicorn und Domenico Talia. ,Models and Languages
for Parallel Computation”. In: ACM Comput. Surv. 30.2 (1998),
S. 123-169. por: 10.1145/280277.280278. URL:
http://doi.acm.org/10.1145/280277.280278.

Annette Bieniusa Programming Distributed Systems 26/ 26


https://doi.org/10.1145/83880.84528
http://doi.acm.org/10.1145/83880.84528
https://doi.org/10.1145/2080.357392
https://doi.org/10.1145/280277.280278
http://doi.acm.org/10.1145/280277.280278

	What kind of abstractions should a programming model for distributed systems provide?
	Remote Procedure Call
	Actors and Message Passing
	The Future: Distributed Programming Languages

