
Dr. Annette Bieniusa Winter term 2019/20

Lecture: Replication and Consistency
Exercise Sheet 1

https://pl.cs.uni-kl.de/homepage/de/teaching/ws19/rac/

1 Amdahl’s Law

You have a choice between buying one uni-processor that executes five zillion instructions per
second, or a 8-processor multiprocessor where each processor executes one zillion instructions
per second. Using Amdahl’s Law, explain how you would decide which to buy for a particular
application.

2 Mutual Exclusion

Programmers at the Flaky Computer Corporation designed the following protocol to achieve
n-thread mutual exclusion.

Flaky Lock
Initially: int turn = 0; boolean busy = false;

Program for Process i:

do
do

turn = i;
while (busy);
busy = true;

while (turn != i);

// critical section

busy = false;

For each question, either sketch a proof, or give an execution where it fails.

• Does this protocol satisfy mutual exclusion?

• Is this protocol starvation-free?

• Is this protocol deadlock-free?

3 Uncontended Locks

In practice, almost all lock acquisitions are uncontended, so the most practical measure of a
lock’s performance is the number of steps needed for a thread to acquire a lock when no other
thread is concurrently trying to acquire the lock.
Scientists at TU Kunterbunt have devised the following wrapper for an arbitrary lock L:

Fast-Path Lock
Initially: int x, y = -1;

Program for Process i:

x = i; // I’m here
wait (y != -1) {} // is the lock free?

y = i; // me again?
if (x != i) // Am I still here?

L.lock(); // slow path
}

// critical section

y = -1;
L.unlock ();

They claim that if the base Lock L provides mutual exclusion and is starvation-free, so does the
FastPath lock, but it can be acquired in a constant number of steps in the absence of contention.
Sketch an argument why they are right, or give a counterexample.



4 Tree locks

A way to generalize the two-thread Peterson lock to n threads is to arrange a number of two-
thread Peterson locks in a binary tree.
For simplicity, suppose that n = 2k for some k. Each thread is assigned a leaf lock which it
shares with one other thread. Each lock treats one thread as thread 0 and the other as thread
1.
In the tree-lock’s acquire method, the thread acquires every two-thread Peterson lock from
that thread’s leaf to the root. The tree-lock’s release method unlocks each fo the two-thread
Peterson locks which the thread has acquired, from the root back to its leaf. At any time, a
thread can be delayed for a finite duration of time. (This means, threads can take naps, or even
vacations, but they do not drop dead.)
For each property, either sketch a proof why it holds, or describe a (possibly infinite) execution
where it is violated:

• mutual exclusion,

• deadlock-freedom, and

• starvation-freedom.

Is there an upper bound on the number of times the tree-lock can be acquired and released
between the time a thread starts acquiring the tree-lock and when it succeeds?


