
Dr. Annette Bieniusa Winter term 2019/20

Lecture: Replication and Consistency
Exercise Sheet 5

https://pl.cs.uni-kl.de/homepage/de/teaching/ws19/rac/

Bad L(u/o)ck

Consider the following (incorrect) variant of a CLH Lock implementation:

public class BadCLHLock implements Lock {

// most recent lock holder

AtomicReference <Qnode > tail;

// thread -local variable

ThreadLocal <Qnode > myNode;

public void lock() {

Qnode qnode = myNode.get();

qnode.locked = true; // I’m not done

// Make me the new tail , and find my predecessor

Qnode pred = tail.getAndSet(qnode);

// spin while predecessor holds lock

while (pred.locked) {}

}

public void unlock () {

// reuse my node next time

myNode.get().locked = false;

}

static class Qnode { // Queue node inner class

public boolean locked = false;

}

}

• How does this lock implementation differ from the CLH Lock that we discussed in class?

• Show how this implementation can go wrong!

Synchronization primitives

A common synchronization primitive implemented in hardware like MIPS, PowerPC and ARM
is load-link/store-conditional (ll/sc). Register objects with this primitive implement two oper-
ations (slightly simplified):

• load-link reads the value.

• store-conditional tries to write a value into the register. The write succeeds for a process
p only if no other process has modified the register since the last load-link operation on
it by p (returns true). Otherwise, it returns false.

Show how to implement an atomic increment operation and a lock using ll/sc.
Can you implement a constant-time CAS from ll/sc? What about implementing ll/sc from
CAS?


