Weak memory consistency

Viktor Vafeiadis MPI-SWS

University of Kaiserslautern, December 2019

The illusion of sequential consistency

Sequential consistency (SC)

- The standard simplistic concurrency model.
- ▶ Threads access shared memory in an interleaved fashion.

The illusion of sequential consistency

Sequential consistency (SC)

- The standard simplistic concurrency model.
- ► Threads access shared memory in an interleaved fashion.

But...

- ► No multicore processor implements SC.
- Compiler optimizations invalidate SC.

Weak consistency

Hardware provides weak consistency.

- ▶ Weak memory models ~> semantics of shared memory.
- Every hardware architecture has its own WMM: x86-TSO, ARM, Power, Itanium.

Weak consistency examples

Store buffering (SB) Initially, x = y = 0x := 1; $a := y \ //0 \ \| \ y := 1;$ $b := x \ //0$

Load buffering (LB) Initially, x = y = 0a := y; //1 || b := x; //1x := 1 || y := 1

Weak consistency in "real life"

Messages may be delayed.

Messages may be sent/received out of order.

$$Email := 1;$$
 $a := Sms; //1$
 $Sms := 1;$
 $b := Email; //0$

Operational memory models

A simple concurrent programming language

Basic domains:

$$r \in \text{Reg}$$
- Registers (local variables) $x \in \text{Loc}$ - Locations $v \in \text{Val}$ - Values including 0 $i \in \text{Tid} = \{1, \dots, N\}$ - Thread identifiers

Expressions and commands:

$$e ::= r | v | e + e | ...$$

 $c ::= skip | if e then c else c | while e do c |$
 $c; c | r := e | r := x | x := e |$
 $r := FAA(x, e) | r := CAS(x, e, e) | fence$

Programs, P : Tid \rightarrow Cmd, written as $P = c_1 \parallel ... \parallel c_N$

Basic set up

Thread subsystem

- ▶ Thread-local steps: $c, s \xrightarrow{l} c', s'$.
- Interpret sequential programs.
- Lift them to program steps: $P, S \xrightarrow{i:l} P', S'$.

Storage subsystem (defined by the memory model)

- Describe the effect of memory accesses and fences.
- $M \xrightarrow{i:l} M'$ where M is the state of the storage subsystem.

Linking the two

Either the thread or the storage subsystem make an internal step, ε; or they make matching *i*:*l* steps.

$$\blacktriangleright P, S, M \Rightarrow P', S', M'.$$

The thread subsystem

Store: $s : \text{Reg} \rightarrow \text{Val}$ (Initial store: $s_0 \triangleq \lambda r. 0$)State: $\langle c, s \rangle \in \text{Command} \times \text{Store}$

Transitions:

$$\frac{c_{1}, s \stackrel{i}{\rightarrow} c'_{1}, s'}{skip; c, s \stackrel{\varepsilon}{\rightarrow} c, s} \qquad \frac{c_{1}, s \stackrel{i}{\rightarrow} c'_{1}, s'}{c_{1}; c_{2}, s \stackrel{i}{\rightarrow} c'_{1}; c_{2}, s'} \qquad \frac{s' = s[r \mapsto s(e)]}{r := e, s \stackrel{\varepsilon}{\rightarrow} skip, s'}$$

$$\frac{l = R(x, v)}{r := x, s \stackrel{l}{\rightarrow} skip, s[r \mapsto v]} \qquad \frac{l = W(x, s(e))}{x := e, s \stackrel{l}{\rightarrow} skip, s}$$

$$\frac{s(e) \neq 0}{if e \text{ then } c_{1} \text{ else } c_{2}, s \stackrel{\varepsilon}{\rightarrow} c_{1}, s} \qquad \frac{s(e) = 0}{if e \text{ then } c_{1} \text{ else } c_{2}, s \stackrel{\varepsilon}{\rightarrow} c_{2}, s}$$

while $e \text{ do } c, s \xrightarrow{\varepsilon} \text{ if } e \text{ then } (c; \text{ while } e \text{ do } c) \text{ else skip}, s$

The thread subsystem: RMW and fence commands

Fetch-and-add:

$$\frac{l = U(x, v, v + s(e))}{r := \mathsf{FAA}(x, e), s \xrightarrow{l} \mathsf{skip}, s[r \mapsto v]}$$

Compare-and-swap:

$$\frac{l = \mathbb{R}(x, v) \quad v \neq s(e_r)}{r := \mathsf{CAS}(x, e_r, e_w), s \stackrel{l}{\rightarrow} \mathsf{skip}, s[r \mapsto 0]}$$
$$\frac{l = \mathbb{U}(x, s(e_r), s(e_w))}{r := \mathsf{CAS}(x, e_r, e_w), s \stackrel{l}{\rightarrow} \mathsf{skip}, s[r \mapsto 1]}$$

Fence:

fence,
$$s \xrightarrow{F} skip, s$$

Lifting to concurrent programs

State: $\langle P, S \rangle \in \text{Program} \times (\text{Tid} \rightarrow \text{Store})$

▶ Initial stores:
$$S_0 \triangleq \lambda i. s_0$$

▶ Initial state: $\langle P, S_0 \rangle$

Transition:

$$\frac{P(i), S(i) \xrightarrow{l} c, s}{P, S \xrightarrow{i:l} P[i \mapsto c], S[i \mapsto s]}$$

SC storage subsystem

SC storage subsystem

Machine state: $M : Loc \rightarrow Val$

Maps each location to its value.

► Initial state:
$$M_0 \triangleq \lambda x$$
. 0
(*i.e.*, the memory that maps every location to 0)

Transitions:

 $\frac{l = W(x, v)}{M \xrightarrow{i:l} M[x \mapsto v]} \qquad \frac{l = R(x, v) \qquad M(x) = v}{M \xrightarrow{i:l} M}$ $\frac{l = U(x, v_r, v_w) \qquad M(x) = v_r}{M \xrightarrow{i:l} M[x \mapsto v_w]} \qquad \frac{l = F}{M \xrightarrow{i:l} M}$

SC: Linking the thread and storage subsystems

$$\frac{P, S \xrightarrow{i:\varepsilon} P', S'}{P, S, M \Rightarrow P', S', M} \qquad \frac{P, S \xrightarrow{i:l} P', S' \qquad M \xrightarrow{i:l} M'}{P, S, M \Rightarrow P', S', M'}$$

Definition (Allowed outcome)

- An outcome is a function O : Tid → Store.
- An outcome O is allowed for a program P under SC if there exists M such that P, S₀, M₀ ⇒^{*} skip||...||skip, O, M.

TSO storage subsystem

TSO storage subsystem

The state consists of:

- ► A memory M : Loc \rightarrow Val
- A function B : Tid → (Loc × Val)* assigning a *store buffer* to every thread.

Initial state: $\langle M_0, B_0 \rangle$ where

- $M_0 = \lambda x. 0$ (the memory maps 0 to every location)
- $B_0 = \lambda i. \epsilon$ (all store buffers are empty)

TSO storage subsystem transitions

$$\frac{\underset{I = \mathbb{W}(x, v)}{\overset{i:I}{\longrightarrow} M, B[i \mapsto \langle x, v \rangle \cdot B(i)]} \qquad \frac{\underset{B(i) = b \cdot \langle x, v \rangle}{\overset{B(i) = b \cdot \langle x, v \rangle}{\overset{I:\varepsilon}{\longrightarrow} M[x \mapsto v], B[i \mapsto b]}}$$

READ

$$I = \mathbb{R}(x, v)$$

$$B(i) = \langle x_n, v_n \rangle \dots \langle x_2, v_2 \rangle \cdot \langle x_1, v_1 \rangle$$

$$\underline{M[x_1 \mapsto v_1][x_2 \mapsto v_2] \dots [x_n \mapsto v_n](x) = v}$$

$$M, B \xrightarrow{i:l} M, B$$

$$\frac{\stackrel{\text{RMW}}{I = U(x, v_r, v_w)} \quad B(i) = \epsilon \quad M(x) = v_r}{M, B \xrightarrow{i:I} M[x \mapsto v_w], B} \qquad \frac{\stackrel{\text{FENCE}}{I = F} \quad B(i) = \epsilon}{M, B \xrightarrow{i:I} M, B}$$

TSO: linking thread and storage subsystems

SILENT-THREAD

$$\frac{P, S \xrightarrow{i:\varepsilon} P', S'}{P, S, M, B \Rightarrow P', S', M, B}$$

SILENT-STORAGE $\frac{M, B \xrightarrow{i:\varepsilon} M', B'}{P, S, M, B \Rightarrow P, S, M', B'}$

$$\frac{P, S \xrightarrow{i:l} P', S' \qquad M, B \xrightarrow{i:l} M', B'}{P, S, M, B \Rightarrow P', S', M', B'}$$

Definition (Allowed outcome)

An outcome *O* is *allowed* for a program *P* under TSO if there exists *M* such that $P, S_0, M_0, B_0 \Rightarrow^* \mathbf{skip} \parallel ... \parallel \mathbf{skip}, O, M, B_0$.

Axiomatic memory models

An alternative way of defining the semantics

Declarative/axiomatic concurrency semantics

- Define the notion of a program *execution* (generalization of an execution trace)
- Map a program to a set of executions
- Define a consistency predicate on executions
- Semantics = set of consistent executions of a program

Exception: "catch-fire" semantics

Existence of at least one "bad" consistent execution implies undefined behavior.

Executions

Events

Reads, Writes, Updates, Fences

Relations

- Program order, po (also called "sequenced-before", sb)
- Reads-from, rf

Executions

Definition (Label)

A *label* has one of of the following forms:

$$\mathbf{R} \times \mathbf{v}_r \qquad \mathbf{W} \times \mathbf{v}_w \qquad \mathbf{U} \times \mathbf{v}_r \ \mathbf{v}_w \qquad \mathbf{F}$$

where $x \in \text{Loc}$ and $v_r, v_w \in \text{Val}$.

Definition (Event)

An *event* is a triple $\langle id, i, l \rangle$ where

- ▶ $id \in \mathbb{N}$ is an event identifier,
- $i \in \text{Tid} \cup \{0\}$ is a thread identifier, and
- I is a label.

Executions

Definition (Execution graph)

An *execution graph* is a tuple $\langle E, po, rf \rangle$ where:

- E is a finite set of events
- ▶ po ("program order") is a partial order on E
- rf ("reads-from") is a binary relation on E such that:

For every
$$\langle w, r \rangle \in rf$$

▶ typ(w)
$$\in$$
 {W,U}

▶
$$typ(r) \in {R, U}$$

▶ $val_w(w) = val_r(r)$

▶ rf⁻¹ is a function

(that is: if $\langle w_1, r \rangle, \langle w_2, r \rangle \in rf$ then $w_1 = w_2$)

Some notations

Let
$$G = \langle E, po, rf \rangle$$
 be an execution graph.

•
$$G.E \triangleq E$$

•
$$G.po \triangleq po$$

•
$$G.rf \triangleq rf$$

► ...

►
$$G.R \triangleq \{r \in E \mid typ(r) = R \lor typ(r) = U\}$$

►
$$G.W \triangleq \{w \in E \mid \texttt{typ}(w) = W \lor \texttt{typ}(w) = U\}$$

▶
$$G.\texttt{U} \triangleq \{u \in E \mid \texttt{typ}(u) = \texttt{U}\}$$

►
$$G.F \triangleq \{f \in E \mid typ(f) = F\}$$

►
$$G.R_x \triangleq G.R \cap \{r \in E \mid loc(r) = x\}$$

Mapping programs to executions: Example

Store buffering (SB)
$$x = y = 0$$
 $x := 1$ $a := y$ $b := x$

Consistency predicate

Let X be some consistency predicate (on execution graphs)

Definition (Allowed outcome under a declarative model)

An outcome O is *allowed* for a program P under X if there exists an execution graph G such that:

- G is an execution graph of P with outcome O.
- G is X-consistent.

Exception: "catch-fire" semantics

- \dots or if there exists an execution graph G such that:
 - G is an execution graph of P.
 - G is X-consistent.
 - G is "bad".

Completeness

The most basic consistency condition:

Definition (Completeness)

An execution graph G is called *complete* if

codom(G.rf) = G.R

i.e., *every* read reads from *some* write.

the result of any execution is the same as if the operations of all the processors were executed in some sequential order, respecting the order specified by the program [Lamport, 1979]

Sequential consistency [Lamport]

Definition

Let sc be a total order on G.E. G is called SC-consistent wrt sc if the following hold:

- If $\langle a, b \rangle \in G$.po then $\langle a, b \rangle \in sc$.
- ▶ If $\langle a, b \rangle \in G.$ rf then $\langle a, b \rangle \in sc$ and there does not exist $c \in G.W_{loc(b)}$ such that $\langle a, c \rangle \in sc$ and $\langle c, b \rangle \in sc$.

Definition

An execution graph G is called SC-*consistent* if the following hold:

► G is SC-consistent wrt some total order sc on G.E.

SB example

Store buffering (SB)
$$x = y = 0$$
 $x := 1 \parallel y := 1$ $a := y \parallel b := x$

Sequential consistency (Alternative)

Definition (Modification order (aka coherence order))

mo is called a *modification order* for an execution graph G if $mo = \bigcup_{x \in Loc} mo_x$ where each mo_x is a total order on $G.W_x$.

Definition (Alternative SC definition)

An execution graph G is called SC-*consistent* if the following hold:

▶ G is complete

► There exists a modification order mo for G such that G.po ∪ G.rf ∪ mo ∪ rb is acyclic where:

▶ $rb \stackrel{\triangle}{=} G.rf^{-1};mo \setminus id$ (from-reads / reads-before)

Equivalence

Theorem

The two SC definitions are equivalent.

Proof (sketch).

Lamport SC \Rightarrow alternative SC:

- ► Take $\operatorname{mo}_{x} \triangleq [W_{x}]$; sc; $[W_{x}]$.
- ▶ Then, $G.po \cup G.rf \cup mo \cup rb \subseteq sc.$

Alternative SC \Rightarrow Lamport SC:

► Take sc to be any total order extending G.po ∪ G.rf ∪ mo ∪ rb.

Relaxing sequential consistency

- SC is very expensive to implement in hardware.
- It also forbids various optimizations that are sound for sequential code.

What most hardware guarantee and compilers preserve is "SC-per-location" (aka *coherence*).

Definition

An execution graph *G* is called *coherent* if the following hold:

- ► G is complete
- For every location x, there exists a total order scx on all accesses to x such that:
 - $\blacktriangleright \text{ If } \langle a,b\rangle \in [\texttt{RW}_x]; \text{ G.po; [\texttt{RW}_x]$ then } \langle a,b\rangle \in \texttt{sc}_x$
 - ▶ If $(a, b) \in [W_x]$; G.rf; $[R_x]$ then $(a, b) \in sc_x$ and there does not exist $c \in G.W_x$ such that $(a, c) \in sc_x$ and $(c, b) \in sc_x$.

Alternative definition of coherence I

SC: $po \cup rf \cup mo \cup rb$ is acyclic COH: $po|_{loc} \cup rf \cup mo \cup rb$ is acyclic

Definition

Let mo be a modification order for an execution graph *G*. *G* is called *coherent wrt* mo if $G.po|_{loc} \cup G.rf \cup mo \cup rb$ is acyclic (where $rb \triangleq G.rf^{-1}$; mo \ id).

Theorem

An execution graph G is coherent iff the following hold:

- ► G is complete
- ► G is coherent wrt some modification order mo for G.

"Bad patterns" I

Recall:

- W is either a write or an RMW.
- R is either a read or an RMW.
"Bad patterns" II

"Bad patterns" III

In coherent executions, an RMW event may only read from its immediate mo-predecessor.

Alternative definition of coherence II

Theorem

Let mo be a modification order for an execution graph G. G is coherent wrt mo iff the following hold:

- rf; po is irreflexive.
- mo; po is irreflexive.
- mo; rf; po is irreflexive.
- ▶ rf⁻¹;mo;po *is irreflexive*.
- ▶ rf⁻¹; mo; rf; po *is irreflexive.*
- rf is irreflexive.
- mo; rf is irreflexive.
- ▶ rf⁻¹; mo; mo is irreflexive.

(no-future-read) (coherence-ww) (coherence-rw) (coherence-wr) (coherence-rr) (*rmw*-1) (rmw-2) (*rmw-atomicity*)

Examples (aka "litmus tests")

Coherence test

Store buffering x = y = 0 x := 1 $a := y \ // 0$ y := 1 $b := x \ // 0$

Atomicity

Parallel increment

$$egin{aligned} & x = 0 \ a := \mathbf{FAA}(x,1) & b := \mathbf{FAA}(x,1) \end{aligned}$$

Guarantees that $a = 1 \lor b = 1$.

Can we implement locks in this semantics?

Spinlock implementation		
lock (/) :	unlock(/) :	
<i>r</i> := 0;	<i>l</i> := 0	
while <i>¬r</i> do		
r := CAS(I,0,1)		

Implementing locks?

Under COH, the spinlock implementation does not guarantee mutual exclusion.

Lock example	
lock(/)	lock(/)
x := 1	y := 1
a := y //0	b := x // 0
unlock(/)	unlock(/)

Message passing

More generally, COH is often too weak:

$$\begin{array}{l} x = y = 0 \\ x := 42; \\ y := 1 \end{array} \begin{vmatrix} a := y; \\ \text{while } \neg a \text{ do } a := y; \\ b := x \ // 0 \end{vmatrix}$$

$$\begin{array}{c} x = y = 0 \\ x := 42; \\ y := 1 \end{array} \begin{vmatrix} a := y; & //1 \\ b := x & //0 \end{vmatrix}$$

MP is a common programming idiom. How can we disallow the weak behavior?

Supporting message passing

Solution:

- Strengthen the notion of an "observed" write.
- In other words, make rf-edges "synchronizing."

Release/acquire (RA) memory model

SC: $po \cup rf \cup mo \cup rb$ is acyclic COH: $po|_{loc} \cup rf \cup mo \cup rb$ is acyclic RA: $(po \cup rf)^+|_{loc} \cup mo \cup rb$ is acyclic

Definition

Let mo be a modification order for an execution graph G. G is called RA-consistent wrt mo if $(po \cup rf)^+|_{loc} \cup mo \cup rb$ is acyclic for some modification order mo for G (where $rb \triangleq G.rf^{-1}; mo \setminus id$).

Definition

An execution graph *G* is RA-*consistent* if the following hold:

► G is complete

• G is RA-consistent wrt some modification order mo for G.

Alternative definition of RA consistency

Theorem

Let mo be a modification order for an execution graph G. G is RA-consistent wrt mo iff the following hold:

- ▶ (po ∪ rf)⁺ is irreflexive.
- mo; $(po \cup rf)^+$ is irreflexive.
- ▶ rf^{-1} ; mo; $(po \cup rf)^+$ is irreflexive.
- ▶ rf⁻¹; mo; mo is irreflexive.

(no-future-read)
(coherence-ww)
(coherence-wr)
(rmw-atomicity)

The C/C++11 memory model

Mixing the models

$$\mathsf{COH} < \mathsf{RA} < \mathsf{SC}$$

$$\begin{array}{c} x := 42 \\ y := 1 \end{array} \begin{vmatrix} a := y \\ \text{while } \neg a \text{ do } a := y \\ b := x \ // 0 \end{vmatrix}$$

We only need the last read of y to synchronize.

Idea: introduce access modes.

$$x :=_{\mathsf{rlx}} 42 \\ y :=_{\mathsf{rel}} 1 \\ \begin{vmatrix} a := y_{\mathsf{rlx}} \\ \mathsf{while} \neg a \text{ do } a := y \\ a := y_{\mathsf{acq}} \\ b := x_{\mathsf{rlx}} \ // 0 \end{vmatrix}$$

Happens-before

Each memory accesses has a mode:

- Reads: rlx, acq, or sc
- Writes: rlx, rel, or sc
- RMWs: rlx, acq, rel, acq-rel, or sc

"Strength" order \square is given by:

Synchronization:

$$G.sw = [W^{\exists rel}]; G.rf; [R^{\exists acq}]$$

Happens-before:

$$G.\mathtt{hb} = (G.\mathtt{po} \cup G.\mathtt{sw})^+$$

Towards C/C++11 memory model

SC: $po \cup rf \cup mo \cup rb$ is acyclic COH: $po|_{loc} \cup rf \cup mo \cup rb$ is acyclic RA: $(po \cup rf)^+|_{loc} \cup mo \cup rb$ is acyclic C11: $hb|_{loc} \cup rf \cup mo \cup rb$ is acyclic

Definition

Let mo be a modification order for an execution graph *G*. *G* is called C11-consistent wrt mo if $hb|_{loc} \cup rf \cup mo \cup rb$ is acyclic (where $rb \triangleq G.rf^{-1}$; mo \ id).

Definition

An execution graph G is C11-consistent if the following hold:

► G is complete

► *G* is C11-consistent wrt some modification order mo for *G*.

The C/C++11 memory model

The full C/C++11 is more general:

- Non-atomics for non-racy code (the default!)
- Four types of fences for fine grained control
- SC accesses to ensure sequential consistency if needed
- ▶ More elaborate definition of sw ("release sequences")

```
int a = 0;
int x = 0;
a = 42; || if(x == 1){
x = 1; || print(a);
```

-

4 int a = 0; atomic_int x = 0; a = 42; || if(x_{rlx} == 1){ fence_{rel}; x_{rlx} = 1; || print(a);

4 int a = 0; atomic_int x = 0; a = 42; fencerel; xrlx = 1; } if(xrlx == 1){ fenceacq; print(a);

4 int a = 0; atomic_int x = 0; a = 42; if(x_{rlx} == 1){ fence_{rel}; x_{rlx} = 1; sw print(a); }

The "synchronizes-with" relation

Release sequences (RMW's)

$$\begin{array}{c|c} x_{\mathsf{rlx}} := 42; \\ y_{\mathsf{rel}} := 1 \end{array} & a := \mathsf{FAI}_{\mathsf{rlx}}(y); \ /\!\!/ 1 & b := y_{\mathsf{acq}}; \ /\!\!/ 2 \\ c := x_{\mathsf{rlx}}; \ /\!\!/ 0 \end{array}$$

$$\texttt{sw} \triangleq ([\texttt{W}^{\exists \texttt{rel}}] \cup [\texttt{F}^{\exists \texttt{rel}}]; \texttt{po}); \texttt{rf}^+; ([\texttt{R}^{\exists \texttt{acq}}] \cup \texttt{po}; [\texttt{F}^{\exists \texttt{acq}}])$$

"Catch-fire" semantics

Definition (Race in C11)

Given a C11-execution graph G, we say that two events a, bC11-race in G if the following hold:

$$\blacktriangleright \ \texttt{loc}(a) = \texttt{loc}(b)$$

- $\blacktriangleright \ \{\texttt{typ}(a),\texttt{typ}(b)\} \cap \{\texttt{W},\texttt{U}\} \neq \emptyset$
- ▶ $na \in {mod(a), mod(b)}$
- ▶ $\langle a, b \rangle \notin hb$ and $\langle b, a \rangle \notin hb$

G is called C11-racy if some a, b C11-race in G.

C11 consistency

Definition

Let mo be a modification order for an execution graph G. G is called C11-consistent wrt mo if:

▶
$$hb|_{loc} \cup rf \cup mo \cup rb$$
 is acyclic (where $rb \triangleq G.rf^{-1}; mo \setminus id$).

Definition

An execution graph G is C11-consistent if the following hold:

- ► G is complete
- ► *G* is C11-consistent wrt some modification order mo for *G*.

SC conditions

- The most involved part of the model, due to the possible mixing of different access modes to the same location.
- ► Changed in C++20
- If there is no mixing of SC and non-SC accesses, then additionally require acyclicity of hb ∪ mo_{sc} ∪ rb_{sc}.

Further reading:

- Overhauling SC atomics in C11 and OpenCL. Mark Batty, Alastair F. Donaldson, John Wickerson, POPL 2016.
- Repairing sequential consistency in C/C++11. Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, Derek Dreyer, PLDI 2017.

Repaired SC condition for fences

 $\begin{array}{l} \textbf{eco} \triangleq (\texttt{rf} \cup \texttt{mo} \cup \texttt{rb})^+ & (\texttt{extended coherence order}) \\ \texttt{psc}_F \triangleq [\texttt{F}^{\texttt{sc}}]; (\texttt{hb} \cup \texttt{hb}; \texttt{eco}; \texttt{hb}); [\texttt{F}^{\texttt{sc}}] & (\texttt{SC fence order}) \end{array}$

Condition on SC fences

 psc_F is acyclic

Example: SB with fences

$$x = y = 0$$

$$x_{rlx} := 1; \qquad \qquad y_{rlx} := 1;$$
fence(sc);
$$a := y_{rlx}; \ // 0 \qquad \qquad b := x_{rlx}; \ // 0$$

$$\swarrow \text{ behavior disallowed}$$

Reduction from RA to SC

Reduction to SC (robustness)

For TSO, it suffices to have a fence between every racy write & subsequent racy read.

For RA, we need more fences. Recall the IRIW example:

Independent reads of independent writes (IRIW)

What is the semantics of SC fences?

From C11, we had:

```
\begin{array}{l} \textbf{eco} \triangleq (\texttt{rf} \cup \texttt{mo} \cup \texttt{rb})^+ & (\texttt{extended coherence order}) \\ \texttt{psc}_F \triangleq [\texttt{F}^{\texttt{sc}}]; (\texttt{hb} \cup \texttt{hb}; \texttt{eco}; \texttt{hb}); [\texttt{F}^{\texttt{sc}}] \\ & (\texttt{partial SC fence order}) \end{array}
```

and required that ${\tt psc}_{\tt F}$ is acyclic.

That is,

Definition (RA consistency with fences)

An execution graph G is RA-*consistent* iff there exists some modification order mo for G such that:

- ► G is complete,
- $(po \cup rf)^+|_{loc} \cup mo \cup rb$ is acyclic, and
- psc_F is acyclic.

Alternative definition of RA consistency

Theorem

An execution graph G is RA-consistent iff there exists a total order sc on $G.F^{sc}$ and a modification order mo for G such that:

- G is complete,
- $(po \cup rf \cup sc)^+$ is irreflexive, and
- ▶ (po ∪ rf ∪ sc)*; eco is irreflexive.
Simple reduction theorem

Theorem

Let G be an RA-consistent execution graph. If

Then, G is SC-consistent.

Proof of the simple reduction theorem (1/2)

Recall:

- ▶ Recall SC-consistency : $po \cup rf \cup mo \cup rb$ is acyclic.
- ▶ Let $hb \triangleq (po \cup rf \cup sc)^+$ and $K \triangleq (mo \cup rb) \setminus hb$.
- It suffices to prove : $hb \cup K$ is acyclic.

Consider minimal cycle in $(hb \cup K)$.

- Cycles with ≤ 1 K-edges disallowed by RA consistency.
- ► Cycle with two *K*-edges:

Proof of the simple reduction theorem (1/2)

Recall:

- ▶ Recall SC-consistency : $po \cup rf \cup mo \cup rb$ is acyclic.
- ▶ Let $hb \triangleq (po \cup rf \cup sc)^+$ and $K \triangleq (mo \cup rb) \setminus hb$.
- It suffices to prove : $hb \cup K$ is acyclic.

Consider minimal cycle in $(hb \cup K)$.

- Cycles with ≤ 1 K-edges disallowed by RA consistency.
- Cycle with two K-edges:

Proof of the simple reduction theorem (1/2)

Recall:

- ▶ Recall SC-consistency : $po \cup rf \cup mo \cup rb$ is acyclic.
- ▶ Let $hb \triangleq (po \cup rf \cup sc)^+$ and $K \triangleq (mo \cup rb) \setminus hb$.
- It suffices to prove : $hb \cup K$ is acyclic.

Consider minimal cycle in $(hb \cup K)$.

- Cycles with ≤ 1 K-edges disallowed by RA consistency.
- Cycle with two K-edges:

Proof of the simple reduction theorem (2/2)

Finally, consider a cycle with three or more K-edges.

Proof of the simple reduction theorem (2/2)

Finally, consider a cycle with three or more K-edges.

Proof of the simple reduction theorem (2/2)

Finally, consider a cycle with three or more K-edges.

