- .
I & TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Replication and Consistency

07 The Universality of Consensus

Annette Bieniusa

AG Softech
FB Informatik
TU Kaiserslautern

Annette Bieniusa Replication and Consistency

1/1

- "
8 TECHNISCHE UNIVERSITAT
I = KAISERSLAUTERN

Thank you!

These slides are based on companion material of the following books:

m The Art of Multiprocessor Programming by Maurice Herlihy
and Nir Shavit

m Synchronization Algorithms and Concurrent Programming
by Gadi Taubenfeld

Annette Bieniusa Replication and Consistency

2/1

- "
8 TECHNISCHE UNIVERSITAT
I = KAISERSLAUTERN

Previously on Replication and Consistency

m Consensus number characterizes synchronization power of objects
m There is no wait-free implementation of X by Y

Annette Bieniusa Replication and Consistency

3/1

- "
8 TECHNISCHE UNIVERSITAT
I = KAISERSLAUTERN

Previously on Replication and Consistency

m Consensus number characterizes synchronization power of objects

m There is no wait-free implementation of X by Y

m Can we implement objects with consensus number 1, 2, ... from
a class of objects that has consensus number co?

Annette Bieniusa Replication and Consistency

3/1

- "
8 TECHNISCHE UNIVERSITAT
I = KAISERSLAUTERN

Universality

A class C' is universal if one can construct a wait-free implementation
of any object (in some “universe”) from arbitrarily many objects of C'
and arbitrarily many read-write registers.

Annette Bieniusa Replication and Consistency 4/ 1

- "
8 TECHNISCHE UNIVERSITAT
I = KAISERSLAUTERN

Universality

A class C' is universal if one can construct a wait-free implementation
of any object (in some “universe”) from arbitrarily many objects of C'
and arbitrarily many read-write registers.

From n-process consensus, we can construct a

m wait-free

m linearizable

m n-threaded implementation

m of any sequentially specified object!

Theorem(Herlihy 1991)

A class is universal in a system of n threads if and only if it has
consensus number > n.

Annette Bieniusa Replication and Consistency

4/ 1

- "
® TECHNISCHE UNIVERSITAT
I: KAISERSLAUTERN

Proof Outline

m We will show a universal construction
m From n-consensus objects
m And atomic registers

m Not a practical construction

m But we know where to start looking!

Annette Bieniusa Replication and Consistency

5/ 1

- "
8 TECHNISCHE UNIVERSITAT
I = KAISERSLAUTERN

Generic Sequential Objects

= Initial state

m Apply sequence of method invocations
m method name + parameters

m Each invocation has a response
m termination condition (normal / exceptional)
m return value (if any)

m Here: Deterministic objects!

Annette Bieniusa Replication and Consistency

6/ 1

- .
I & TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

public interface SegObject {
public abstract Response apply(Invocation invoc);

}

public class Invoc {
public String method;
public Object[] args;
}

public class Response {
public Object value;
}

m Similar to Bakery algorithm

Annette Bieniusa Replication and Consistency

7/1

- "
® TECHNISCHE UNIVERSITAT
I: KAISERSLAUTERN

Example: Stack

m Initial state: empty
m For the following invocation sequence, what are the return values
for the invocations?

push(2) -- push(4) —-- pop() —-- push(3) —-- push(2) —-- pop()

Annette Bieniusa Replication and Consistency

8/ 1

- "
8 TECHNISCHE UNIVERSITAT
I = KAISERSLAUTERN

Universal Construction: ldea

m Object represented as

m initial object state
m a log, i.e. a linked list of the method calls

m For new method call:

m Find head of list
Atomically append call
Compute response by traversing the log while applying all

invocations (upto and including the new one) on a private copy
m Return result

Annette Bieniusa Replication and Consistency

- "
8 TECHNISCHE UNIVERSITAT
I = KAISERSLAUTERN

Linearizing concurrent invocations

m Use one-time consensus object to decide next entry in log
m All threads update the corresponding pointer based on decision
from consensus

m OK because they all write the same value
m Tail of log is immutable, only updates at head of the log
m Allows concurrent executions of apply(...) on private copy

m Unsuccessful thereads need to run yet another consensus on the
new head

Annette Bieniusa Replication and Consistency 10/ 1

- "
8 TECHNISCHE UNIVERSITAT
I = KAISERSLAUTERN

Linearizing concurrent invocations

m Use one-time consensus object to decide next entry in log
m All threads update the corresponding pointer based on decision
from consensus

m OK because they all write the same value
m Tail of log is immutable, only updates at head of the log
m Allows concurrent executions of apply(...) on private copy

m Unsuccessful thereads need to run yet another consensus on the
new head

What happens if a thread stops some point while executing these steps?

Annette Bieniusa Replication and Consistency 10/ 1

- .
I & TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Representation of Log Entries

class Node {
Invoc invoc;
Consensus<Node> decideNext;
Node next;
int seq; // sequence number

Node (Invoc invoc) {
this.invoc = invoc;
this.decideNext = new Consensus<Node> ()
this.seq = 0; // O indicates that node is not in log yet

Annette Bieniusa Replication and Consistency 11/ 1

-
I = TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Universal Object

node

tail

Thread i

observed

head last at
location i

Annette Bieniusa Replication and Consistency

12/ 1

- "
® TECHNISCHE UNIVERSITAT
I: KAISERSLAUTERN

Remarks

m Consensus objects only work once

m Trick: Each node has its own consensus object

m Maximum value in heads array is current actual head of log

m Similar to Bakery algorithm

Annette Bieniusa Replication and Consistency 13/ 1

- .
I & TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Universal Object

class Universal {
Node[] head;
Node tail = new Node();
tail.seq = 1; // sentinel node

Universal () {
for (int j = 0; j < n; Jj++){
head[]j] = tail;

static Node max (Node[] array) {
Node max = arrayl[0];
for (int i 1; 1 < array.length; i++)
if (max.seq < arrayl[i].seq)
max = arrayl[i];
return max;

Annette Bieniusa Replication and Consistency

14/ 1

- .
I = TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Universal Application - Part 1
Response apply (Invoc invoc) {
int i = ThreadID.get();
// construct new log entry object
Node prefer = new Node (invoc);

// while not added to the list
while (prefer.seq == 0) {
// node at head of list where I will try to append
Node before = Node.max (head);
// run consensus proposing my new node
Node after = before.decideNext.decide (prefer);
// set next pointer based on position; potentially done by
multiple threads
before.next = after;
// set sequence number, indicating that node has been inserted
after.seq = before.seq + 1;
// update my knowledge of log list
head[i] = after;
}

// to be continued

Annette Bieniusa Replication and Consistency 15/ 1

- .
I & TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Universal Application - Part 2

// initial version of my private copy of object
SegObject MyObject = new SegObject ();
// iterate over log and apply all invocations up to my own one
current = tail.next;
while (current != prefer) {
MyObject.apply (current.invoc) ;
current = current.next;
}
// return response for my own current invocation
return MyObject.apply (current.invoc);

Annette Bieniusa Replication and Consistency 16/ 1

- "
8 TECHNISCHE UNIVERSITAT
I = KAISERSLAUTERN

Correctness of Construction

m List defines linearized sequential history

m Linearization point when consensus is decided for a node

m Thread returns its response based on list order

Annette Bieniusa Replication and Consistency 17/ 1

- "
8 TECHNISCHE UNIVERSITAT
I = KAISERSLAUTERN

Correctness of Construction

m List defines linearized sequential history

m Linearization point when consensus is decided for a node
m Thread returns its response based on list order

Is the construction wait-free?

Annette Bieniusa Replication and Consistency 17/ 1

- "
8 TECHNISCHE UNIVERSITAT
I = KAISERSLAUTERN

Correctness of Construction

m List defines linearized sequential history

m Linearization point when consensus is decided for a node
m Thread returns its response based on list order

Is the construction wait-free?

Append at head is done in finite number of steps

But: Threads can be fail repeatedly when trying to win the
consensus

m However, this implies other threads make progess!

Annette Bieniusa Replication and Consistency 17/ 1

- "
8 TECHNISCHE UNIVERSITAT
I = KAISERSLAUTERN

Progress conditions

Lock-freedom
In an infinite execution, infinitely often some method call finishes

(obviously, in a finite number of steps).

Wait-freedom
Each method call takes a finite number of steps to finish.

Annette Bieniusa Replication and Consistency 18/ 1

- "
8 TECHNISCHE UNIVERSITAT
I = KAISERSLAUTERN

Correctness: Lock-freedom

Our universal construction so far is lock-free because:

m Thread can repeatedly fail to win consensus on head only if
another succeeds

m Consensus winner adds node and completes within a finite number
of steps

Annette Bieniusa Replication and Consistency 19/ 1

- "
8 TECHNISCHE UNIVERSITAT
I = KAISERSLAUTERN

From lock-free to wait-free

m Idea: Threads help each other to append their nodes
m Need to make additional information available for supporting

threads
m Will reuse lock-free construction with additional announce array

m Store (pointer to) node in announce
m If a thread doesn’t append its node, another thread will see it in

the array and help to append it

Annette Bieniusa Replication and Consistency 20/ 1

-
I = TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Wait-free Universal Object

Ptr to the node
thread i wants

announce to append

tail i

head

Annette Bieniusa Replication and Consistency

21/ 1

- .
I & TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

Adding the Announce Array

public class Universal {
private Node[] announce; // additional array with n entries
private Node[] head;
private Node tail = new node () ;

Universal () {
tail.seq = 1;
for (int j = 0; J < n; Jj++){
head[j] = tail;
announce([j] = tail; // initiallly set to sentinel node

Annette Bieniusa Replication and Consistency 22/ 1

- .
I & TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

A Cry for Help!

public Response apply(Invoc invoc) {
int i = ThreadID.get();
// announce my new log entry
announce[i] = new Node (invoc) ;
// find head of list
head[i] = Node.max (head);
while (announce[i].seq == 0) {

// while node not appended to list

Annette Bieniusa Replication and Consistency 23/ 1

- "
® TECHNISCHE UNIVERSITAT
I = KAISERSLAUTERN

Zooming into the loop

while (announce[i].seq == 0) {
Node before = head[i];
Node help = announce| (before.seq + 1) % n];
if (help.seq == 0)
prefer = help;
else

prefer = announcel[i];

m Non-zero sequence number indicates success
m Thread keeps helping append nodes until its own node is appended

Annette Bieniusa Replication and Consistency 24/ 1

- "
8 TECHNISCHE UNIVERSITAT
I = KAISERSLAUTERN

Help!

m When last node in list has sequence number k, all threads check
whether thread (k + 1) mod n wants help

m If so, try to append its node first

= In general, after (max) n more nodes appended, some thread will
have observe that thread k + 1 wants help

m Try to append that node
m Some threads succeeds

m After thread 7 announces its node, no more than n other calls can
start and finish without appending i's node

Annette Bieniusa Replication and Consistency 25/ 1

- "
8 TECHNISCHE UNIVERSITAT
I = KAISERSLAUTERN

Finishing the Job

m Once a thread’s node is inserted in the log, the rest is again the
same as in lock-free algorithm

m That is: Compute the result by sequentially applying the method
calls in the list to a private copy of the object starting from the
initial state

Annette Bieniusa Replication and Consistency 26/ 1

-
I = TECHNISCHE UNIVERSITAT
= KAISERSLAUTERN

QED

Annette Bieniusa Replication and Consistency 27/ 1

- "
8 TECHNISCHE UNIVERSITAT
I = KAISERSLAUTERN

Implications

Theorem(Herlihy 1991)

A class is universal in a system of n threads if and only if it has
consensus number > n.

B getAndset () iS not universal for system with > n threads
B compareAndswap () iS universal for any number of threads

Any architecture that does not provide a universal primitive has
inherent limitations!

m You cannot avoid locking for concurrent data structures!
m But why do we care? Is locking really so bad?

Annette Bieniusa Replication and Consistency 28/ 1

- "
8 TECHNISCHE UNIVERSITAT
I = KAISERSLAUTERN

Locking and Scheduling

m Locking affects the assumptions we need to make on the
operating system in order to guarantee progress
m The scheduler is a part of the OS that determines

m which thread gets to run on which processor
m how long it runs for

m A given thread can be active, that is, executing instructions, or

suspended.

Annette Bieniusa Replication and Consistency 29/ 1

- "
8 TECHNISCHE UNIVERSITAT
I = KAISERSLAUTERN

Do You Remember these Progress Conditions?

77 Some thread trying to acquire the locks eventually succeeds.
77: Every thread trying to acquire the locks eventually succeeds.
77: Some thread calling the method eventually returns.

77: Every thread calling the method eventually returns.

Annette Bieniusa Replication and Consistency 30/ 1

- "
8 TECHNISCHE UNIVERSITAT
I = KAISERSLAUTERN

Solution: Progress conditions

Deadlock-free: Some thread trying to acquire the locks eventually
succeeds.

Starvation-free: Every thread trying to acquire the locks eventually
succeeds.

Lock-free: Some thread calling the method eventually returns.

Wait-free: Every thread calling the method eventually returns.

Annette Bieniusa Replication and Consistency 31/1

- "
8 TECHNISCHE UNIVERSITAT
I = KAISERSLAUTERN

Schedulers are usually benevolent

m Programmers design lock-free or deadlock-free algorithms, but
what they are implicitly assuming is that all method calls
eventually complete as if they were wait-free.

m Schedulers are do not single individual threads out, but are fair.

Annette Bieniusa Replication and Consistency

32/ 1

- "
8 TECHNISCHE UNIVERSITAT
I = KAISERSLAUTERN

Next on Replication and Consistency

m We learned how to define the safety (correctness) and liveness
(progress) of concurrent programs and objects

m We are ready to start the practice of implementing them

m Next lecture: Implementing spin locks on multiprocesor machines!

Annette Bieniusa Replication and Consistency 33/1

-)
8 TECHNISCHE UNIVERSITAT
I = KAISERSLAUTERN

Further reading

Herlihy, Maurice. 1991. “Wait-Free Synchronization."” ACM Trans.
Program. Lang. Syst. 13 (1): 124-49.
https://doi.org/10.1145/114005.102808.

Annette Bieniusa Replication and Consistency 34/ 1

https://doi.org/10.1145/114005.102808

	QED

