
Replication and Consistency
07 The Universality of Consensus

Annette Bieniusa

AG Softech
FB Informatik

TU Kaiserslautern

Annette Bieniusa Replication and Consistency 1/ 1



Thank you!

These slides are based on companion material of the following books:

The Art of Multiprocessor Programming by Maurice Herlihy
and Nir Shavit
Synchronization Algorithms and Concurrent Programming
by Gadi Taubenfeld

Annette Bieniusa Replication and Consistency 2/ 1



Previously on Replication and Consistency

Consensus number characterizes synchronization power of objects
There is no wait-free implementation of X by Y

Can we implement objects with consensus number 1, 2, . . . from
a class of objects that has consensus number ∞?

Annette Bieniusa Replication and Consistency 3/ 1



Previously on Replication and Consistency

Consensus number characterizes synchronization power of objects
There is no wait-free implementation of X by Y
Can we implement objects with consensus number 1, 2, . . . from
a class of objects that has consensus number ∞?

Annette Bieniusa Replication and Consistency 3/ 1



Universality
A class C is universal if one can construct a wait-free implementation
of any object (in some “universe”) from arbitrarily many objects of C
and arbitrarily many read-write registers.

From n-process consensus, we can construct a

wait-free
linearizable
n-threaded implementation
of any sequentially specified object!

Theorem(Herlihy 1991)
A class is universal in a system of n threads if and only if it has
consensus number ≥ n.

Annette Bieniusa Replication and Consistency 4/ 1



Universality
A class C is universal if one can construct a wait-free implementation
of any object (in some “universe”) from arbitrarily many objects of C
and arbitrarily many read-write registers.

From n-process consensus, we can construct a

wait-free
linearizable
n-threaded implementation
of any sequentially specified object!

Theorem(Herlihy 1991)
A class is universal in a system of n threads if and only if it has
consensus number ≥ n.

Annette Bieniusa Replication and Consistency 4/ 1



Proof Outline

We will show a universal construction
From n-consensus objects
And atomic registers

Not a practical construction
But we know where to start looking!

Annette Bieniusa Replication and Consistency 5/ 1



Generic Sequential Objects

Initial state
Apply sequence of method invocations

method name + parameters
Each invocation has a response

termination condition (normal / exceptional)
return value (if any)

Here: Deterministic objects!

Annette Bieniusa Replication and Consistency 6/ 1



public interface SeqObject {
public abstract Response apply(Invocation invoc);

}

public class Invoc {
public String method;
public Object[] args;

}

public class Response {
public Object value;

}

Similar to Bakery algorithm

Annette Bieniusa Replication and Consistency 7/ 1



Example: Stack

Initial state: empty
For the following invocation sequence, what are the return values
for the invocations?

push(2) -- push(4) -- pop() -- push(3) -- push(2) -- pop()

Annette Bieniusa Replication and Consistency 8/ 1



Universal Construction: Idea

Object represented as
initial object state
a log, i.e. a linked list of the method calls

For new method call:
Find head of list
Atomically append call
Compute response by traversing the log while applying all
invocations (upto and including the new one) on a private copy
Return result

Annette Bieniusa Replication and Consistency 9/ 1



Linearizing concurrent invocations

Use one-time consensus object to decide next entry in log
All threads update the corresponding pointer based on decision
from consensus

OK because they all write the same value

Tail of log is immutable, only updates at head of the log
Allows concurrent executions of apply(...) on private copy

Unsuccessful thereads need to run yet another consensus on the
new head

What happens if a thread stops some point while executing these steps?

Annette Bieniusa Replication and Consistency 10/ 1



Linearizing concurrent invocations

Use one-time consensus object to decide next entry in log
All threads update the corresponding pointer based on decision
from consensus

OK because they all write the same value

Tail of log is immutable, only updates at head of the log
Allows concurrent executions of apply(...) on private copy

Unsuccessful thereads need to run yet another consensus on the
new head

What happens if a thread stops some point while executing these steps?

Annette Bieniusa Replication and Consistency 10/ 1



Representation of Log Entries

class Node {
Invoc invoc;
Consensus<Node> decideNext;
Node next;
int seq; // sequence number

Node(Invoc invoc) {
this.invoc = invoc;
this.decideNext = new Consensus<Node>()
this.seq = 0; // 0 indicates that node is not in log yet

}

Annette Bieniusa Replication and Consistency 11/ 1



Universal Object

Annette Bieniusa Replication and Consistency 12/ 1



Remarks

Consensus objects only work once
Trick: Each node has its own consensus object

Maximum value in heads array is current actual head of log
Similar to Bakery algorithm

Annette Bieniusa Replication and Consistency 13/ 1



Universal Object
class Universal {

Node[] head;
Node tail = new Node();
tail.seq = 1; // sentinel node

Universal() {
for (int j = 0; j < n; j++){
head[j] = tail;

}
}

static Node max(Node[] array) {
Node max = array[0];
for (int i = 1; i < array.length; i++)
if (max.seq < array[i].seq)
max = array[i];

return max;
}

...

Annette Bieniusa Replication and Consistency 14/ 1



Universal Application - Part 1
Response apply(Invoc invoc) {
int i = ThreadID.get();
// construct new log entry object
Node prefer = new Node(invoc);

// while not added to the list
while (prefer.seq == 0) {

// node at head of list where I will try to append
Node before = Node.max(head);
// run consensus proposing my new node
Node after = before.decideNext.decide(prefer);
// set next pointer based on position; potentially done by
multiple threads
before.next = after;
// set sequence number, indicating that node has been inserted
after.seq = before.seq + 1;
// update my knowledge of log list
head[i] = after;
}
// to be continued

Annette Bieniusa Replication and Consistency 15/ 1



Universal Application - Part 2

...
// initial version of my private copy of object
SeqObject MyObject = new SeqObject();
// iterate over log and apply all invocations up to my own one
current = tail.next;
while (current != prefer){

MyObject.apply(current.invoc);
current = current.next;

}
// return response for my own current invocation
return MyObject.apply(current.invoc);

}

Annette Bieniusa Replication and Consistency 16/ 1



Correctness of Construction

List defines linearized sequential history
Linearization point when consensus is decided for a node

Thread returns its response based on list order

Is the construction wait-free?

Append at head is done in finite number of steps
But: Threads can be fail repeatedly when trying to win the
consensus
However, this implies other threads make progess!

Annette Bieniusa Replication and Consistency 17/ 1



Correctness of Construction

List defines linearized sequential history
Linearization point when consensus is decided for a node

Thread returns its response based on list order

Is the construction wait-free?

Append at head is done in finite number of steps
But: Threads can be fail repeatedly when trying to win the
consensus
However, this implies other threads make progess!

Annette Bieniusa Replication and Consistency 17/ 1



Correctness of Construction

List defines linearized sequential history
Linearization point when consensus is decided for a node

Thread returns its response based on list order

Is the construction wait-free?

Append at head is done in finite number of steps
But: Threads can be fail repeatedly when trying to win the
consensus
However, this implies other threads make progess!

Annette Bieniusa Replication and Consistency 17/ 1



Progress conditions

Lock-freedom
In an infinite execution, infinitely often some method call finishes
(obviously, in a finite number of steps).

Wait-freedom
Each method call takes a finite number of steps to finish.

Annette Bieniusa Replication and Consistency 18/ 1



Correctness: Lock-freedom

Our universal construction so far is lock-free because:

Thread can repeatedly fail to win consensus on head only if
another succeeds
Consensus winner adds node and completes within a finite number
of steps

Annette Bieniusa Replication and Consistency 19/ 1



From lock-free to wait-free

Idea: Threads help each other to append their nodes
Need to make additional information available for supporting
threads
Will reuse lock-free construction with additional announce array

Store (pointer to) node in announce
If a thread doesn’t append its node, another thread will see it in
the array and help to append it

Annette Bieniusa Replication and Consistency 20/ 1



Wait-free Universal Object

Annette Bieniusa Replication and Consistency 21/ 1



Adding the Announce Array

public class Universal {
private Node[] announce; // additional array with n entries
private Node[] head;
private Node tail = new node();

Universal() {
tail.seq = 1;
for (int j = 0; j < n; j++){
head[j] = tail;
announce[j] = tail; // initiallly set to sentinel node

}
}

Annette Bieniusa Replication and Consistency 22/ 1



A Cry for Help!

public Response apply(Invoc invoc) {
int i = ThreadID.get();
// announce my new log entry
announce[i] = new Node(invoc);
// find head of list
head[i] = Node.max(head);
while (announce[i].seq == 0) {
...
// while node not appended to list
...
}

Annette Bieniusa Replication and Consistency 23/ 1



Zooming into the loop

while (announce[i].seq == 0) {
Node before = head[i];
Node help = announce[(before.seq + 1) % n];
if (help.seq == 0)

prefer = help;
else

prefer = announce[i];
...

Non-zero sequence number indicates success
Thread keeps helping append nodes until its own node is appended

Annette Bieniusa Replication and Consistency 24/ 1



Help!

When last node in list has sequence number k, all threads check
whether thread (k + 1) mod n wants help

If so, try to append its node first

In general, after (max) n more nodes appended, some thread will
have observe that thread k + 1 wants help

Try to append that node
Some threads succeeds

After thread i announces its node, no more than n other calls can
start and finish without appending i’s node

Annette Bieniusa Replication and Consistency 25/ 1



Finishing the Job

Once a thread’s node is inserted in the log, the rest is again the
same as in lock-free algorithm
That is: Compute the result by sequentially applying the method
calls in the list to a private copy of the object starting from the
initial state

Annette Bieniusa Replication and Consistency 26/ 1



QED

Annette Bieniusa Replication and Consistency 27/ 1



Implications

Theorem(Herlihy 1991)
A class is universal in a system of n threads if and only if it has
consensus number ≥ n.

getAndSet() is not universal for system with ≥ n threads
compareAndSwap() is universal for any number of threads

Any architecture that does not provide a universal primitive has
inherent limitations!

You cannot avoid locking for concurrent data structures!
But why do we care? Is locking really so bad?

Annette Bieniusa Replication and Consistency 28/ 1



Locking and Scheduling

Locking affects the assumptions we need to make on the
operating system in order to guarantee progress
The scheduler is a part of the OS that determines

which thread gets to run on which processor
how long it runs for

A given thread can be active, that is, executing instructions, or
suspended.

Annette Bieniusa Replication and Consistency 29/ 1



Do You Remember these Progress Conditions?

??: Some thread trying to acquire the locks eventually succeeds.

??: Every thread trying to acquire the locks eventually succeeds.

??: Some thread calling the method eventually returns.

??: Every thread calling the method eventually returns.

Annette Bieniusa Replication and Consistency 30/ 1



Solution: Progress conditions

Deadlock-free: Some thread trying to acquire the locks eventually
succeeds.

Starvation-free: Every thread trying to acquire the locks eventually
succeeds.

Lock-free: Some thread calling the method eventually returns.

Wait-free: Every thread calling the method eventually returns.

Annette Bieniusa Replication and Consistency 31/ 1



Schedulers are usually benevolent

Programmers design lock-free or deadlock-free algorithms, but
what they are implicitly assuming is that all method calls
eventually complete as if they were wait-free.
Schedulers are do not single individual threads out, but are fair.

Annette Bieniusa Replication and Consistency 32/ 1



Next on Replication and Consistency

We learned how to define the safety (correctness) and liveness
(progress) of concurrent programs and objects
We are ready to start the practice of implementing them
Next lecture: Implementing spin locks on multiprocesor machines!

Annette Bieniusa Replication and Consistency 33/ 1



Further reading

Herlihy, Maurice. 1991. “Wait-Free Synchronization.” ACM Trans.
Program. Lang. Syst. 13 (1): 124–49.
https://doi.org/10.1145/114005.102808.

Annette Bieniusa Replication and Consistency 34/ 1

https://doi.org/10.1145/114005.102808

	QED

